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Abstract. The description of baryons as fully relativistic bound states of quark and glue reduces to an
effective Bethe-Salpeter equation with quark-exchange interaction when irreducible 3-quark interactions are
neglected and separable 2-quark (diquark) correlations are assumed. This covariant quark-diquark model
of baryons is studied with the inclusion of the quark substructure of the diquark correlations. In order to
maintain electromagnetic current conservation it is then necessary to go beyond the impulse approximation.
A conserved current is obtained by including the coupling of the photon to the exchanged quark and direct
“seagull” couplings to the diquark structure. Adopting a simple dynamical model of constituent quarks and
exploring various parametrisations of scalar diquark correlations, the nucleon Bethe-Salpeter equation is
solved and the proton and neutron electromagnetic form factors are calculated numerically. The resulting
magnetic moments are still about 50% too small, the improvements necessary to remedy this are discussed.
The results obtained in this framework provide an excellent description of the electric form factors (and
charge radii) of the proton, up to a photon momentum transfer of 3.5GeV2, and the neutron.

PACS. 11.10.St Bound states; Bethe-Salpeter equations – 13.40.Gp Electromagnetic form factors –
14.20.Dh Protons and neutrons

1 Introduction

To the precision accessible to current measurements, the
proton is the only known hadron that is stable under the
effect of all interactions. Protons are thus ideal for use in
beams or targets for scattering experiments designed to
explore the fundamental dynamics of the strong interac-
tion. From this, it follows that more is known about the
proton and its nearly stable isospin partner, the neutron,
than any other hadron. There is an abundance of observ-
able properties of the nucleon, from elastic scattering form
factors to electromagnetic form factors and parton distri-
butions, which are being measured with increasing preci-
sion at various accelerator facilities around the world. In
particular, the ratio of the electric and the magnetic form
factor of the proton is subject to current measurements
at TJNAF, and current experiments at MAMI [1] and
NIKHEF [2] show great promise that soon we will have
a precise knowledge of the electromagnetic properties of
the neutron as well. Hence, the development of an accu-
rate and tractable covariant framework for the nucleon in
terms of the underlying quarks and gluons is clearly de-
sirable.

Models of the nucleon and other baryons are numer-
ous and have had varying degrees of success as they
are usually designed to describe particular properties of
baryons. Some of the frameworks that have been em-
ployed are non-relativistic [3–5] and relativistic [6] quark
potential models, bag models [7,8], skyrmion models [9–
12] or the chiral soliton of the Nambu-Jona-Lasinio (NJL)
model [13,14]. The relativistic bound state problem of 3-
quark Faddeev type was studied extensively within the
NJL model [15–20] and its non-local generalization, the
global color model [21,22]. In addition, some complemen-
tary aspects of these models have been combined, e.g.,
the chiral bag model [23,24] and a hybrid model that im-
plements the NJL-soliton picture of baryons within the
quark-diquark Bethe-Salpeter (BS) framework [25].

The present study is concerned with the further de-
velopment of a description of baryons (and the nucleon,
in particular) as bound states of quarks and gluons in a
fully covariant quantum field-theoretic framework based
on the Dyson-Schwinger equations of QCD. Such a frame-
work has already reached a high level of sophistication for
mesons. In these studies, the quark-antiquark scattering
kernel is modeled as a confined, non-perturbative gluon
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exchange. Such a gluon exchange can be provided by so-
lutions to the Dyson-Schwinger equations for the prop-
agators of QCD in the covariant gauge [26,27]. In phe-
nomenological studies the gross features of such solutions
are mimicked by the use of a phenomenological quark-
antiquark kernel. With this kernel, the dressed-quark
propagator is obtained as the solution of its (quenched)
Dyson-Schwinger equation (DSE), and the same kernel
is then employed in the quark-antiquark Bethe-Salpeter
equation (BSE)1 from which one obtains the masses of
the meson bound states and their BS amplitudes. Once
the dressed-quark propagators and meson BS amplitudes
have been obtained, observables can be calculated in a
straightforward manner. The success of this approach
has been demonstrated in many phenomenological ap-
plications, such as electromagnetic form factors [29], de-
cay widths, π-π scattering [30], vector-meson electropro-
duction [31], to name a few. Summaries of this Dyson-
Schwinger/Bethe-Salpeter description of mesons may be
found in refs. [32–34].

The significantly more complicated framework re-
quired for an analogous description of baryons based on
the quantum field-theoretic description of bound states in
3-quark correlations has meant that baryons have received
far less attention than mesons. Consequently, the utility
of such a description for the baryons is considerably less
understood, even on the phenomenological level. (For ex-
ample, the ramifications of various truncation schemes, re-
quired in any quantum field-theoretic treatment of bound
states, which have been explored extensively in the meson
sector are completely unknown in the baryon sector.) The
developments in this direction employ a picture based on
separable 2-quark correlations, i.e. diquarks, interacting
with the 3rd quark which allows a treatment of the rela-
tivistic bound state in a manner analogous to the 2-body
BS problem [35–37]. Although these studies employ sim-
plified model assumptions for the quark propagators and
diquark correlators, they demonstrate the utility of the
approach in general, and these simplified model assump-
tions can be replaced by more realistic ones in the future
as more is understood about the underlying dynamics of
quarks and gluons.

In the present article we generalize this framework for
the 3-quark bound state problem in quantum field the-
ory to accommodate the quark substructure of the sepa-
rable diquark correlations. This necessary extension has
important implications on the electromagnetic properties
of the nucleons. We explicitly construct a conserved cur-
rent for their electromagnetic couplings, and we verify an-
alytically that it yields the correct charges of both nucle-
ons. To achieve this we employ Ward and Ward-Takahashi
identities for the quark correlations which arise from elec-
tromagnetic gauge invariance. In order to avoid unneces-
sary complications, our present study considers only sim-
ple constituent quark and diquark propagators. However,
the generalization to include dressed propagators, most

1 We warn the reader not to confuse the meaning of this
acronym with another one adopted recently. See, e.g., ref. [28].

importantly to account for the confined nature of quarks
and diquarks, requires only minor modifications.

The organization of the article is as follows. In sect. 2,
some general properties of the two-quark correlations (or
diquarks) are discussed. The importance of construct-
ing a diquark correlator that is antisymmetric under
quark exchange is emphasized. The parametrisations of
the Lorentz-scalar isoscalar diquark correlations which are
employed in the numerical calculations of the subsequent
sections are introduced to reflect these properties in delib-
erately simple ways. The framework is sufficiently general
to accommodate the results for the diquark correlators as
they become available from studies of the underlying dy-
namics of quark and gluon correlations in QCD. Of course,
diquark correlations other than the scalar diquark will be
important for a more complete description of the nucleon.
Certainly necessary is the inclusion of other channels, such
as the axialvector diquark, when the description is ex-
tended to the octet and the decuplet baryons. Nonethe-
less, for the purposes of the present study, only scalar di-
quarks are considered; the generalization to include other
diquarks is straightforward [37]. In sect. 3, the nucleon BS
equation and the quark-exchange kernel are introduced.
One particular feature of this kernel is that it necessar-
ily depends on the total momentum of the nucleon bound
state Pn. This conclusion is based on general arguments,
such as the exchange antisymmetry of the diquark corre-
lations. It is important to obtain the correct normaliza-
tions and charges of the nucleon bound states. In partic-
ular, to ensure current conservation requires a consider-
able extension beyond the impulse approximation in the
calculations of electromagnetic form factors for baryons.2
The numerical solutions for the nucleon BS amplitudes
obtained herein preserve the invariance of observables un-
der a re-routing of the relative momentum, a requirement
that follows from the translational invariance of the rela-
tivistic bound state problem. In sect. 4, the normalization
condition for the nucleon BS amplitude is derived and the
nucleon electromagnetic current is obtained in sect. 5. In
sect. 5.1, the “seagull” contributions to the electromag-
netic current, necessary for current conservation, are de-
rived from the Ward and Ward-Takahashi identities. In
sect. 6, expressions for the electromagnetic form factors
of the nucleon are derived, the numerical calculations are
described in sect. 6.1, and the results for the form factors
are presented and discussed in sect. 6.2. The conclusions
of this study are provided in sect. 7. Several appendices
have also been included with further details which may
provide the interested reader with addition insight into
the framework.

2 Diquark correlations

To obtain a solution of the 3-particle Faddeev equations in
quantum field theory requires a truncation of the interac-

2 The Pn-dependence of the exchange kernel violates one of
the necessary conditions for current conservation in the impulse
approximation. See sect. 5.
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tion kernel. A widely employed truncation scheme is to ne-
glect contributions to the Faddeev kernel which arise from
irreducible 3-quark interactions. This allows one to rewrite
the Dyson series for the 3-quark Green function as a cou-
pled system of equations. The first being the BS equation
for the 2-quark scattering amplitude and the other being
the Faddeev equation, which describes the coupling of the
3rd quark to these 2-quark correlations. As a result, the
nature of the gluonic interactions of quarks enters only
in the BSE of the 2-quark subsystem, i.e. in the quark-
quark interaction kernel. The solution of the full inhomo-
geneous BS problem for this 2-quark system is simplified
by assuming separable contributions (explained below),
hereafter referred to as diquarks, to account for the rele-
vant 2-quark correlations within the hadronic bound state.
Herein, a “diquark correlation” thus refers to the use of a
separable 4-quark function in the 3̄ representation of the
SU(3) color group. The utility of such diquark correla-
tions for a description of baryon bound states is a central
element of the present approach.

While in the NJL model the 2-quark scattering ampli-
tude has the property of being separable, in general this
is an additional assumption useful to simplify the 3-quark
bound state problem in quantum field theory. An example
for separable contributions would be (a finite sum of) iso-
lated poles at timelike total momenta P 2 of the diquark.
Such poles allow the use of homogeneous BSEs to obtain
the respective amplitudes from the gluonic interaction ker-
nel of the quarks, and thus to calculate these separable
contributions to the 2-quark scattering amplitude.

However, the validity of using a diquark correlator
to parametrize the 2-quark correlations phenomenologi-
cally, does not rely on the existence of asymptotic diquark
states. Rather, the diquark correlator may be devoid of
singularities for timelike momenta, which may be inter-
preted as one possible realization of diquark confinement.
In principle, one may appeal to models employing a gen-
eral, separable diquark correlator which need not have any
simple analytic structure, in which case no particle inter-
pretation for the diquark would be possible. The imple-
mentation of this model of confined diquark is straight-
forward and does not introduce significant changes to the
framework. The use of diquark correlations in this capac-
ity is quite general and does not necessarily imply the
existence diquarks, which have not been observed experi-
mentally.

The absence of asymptotic-diquark states may be ex-
plained in a number of ways. Although it has been ob-
served that solutions of the BSE in ladder approximation
yield asymptotic color-3̄ diquark states [38], when terms
beyond ladder approximation are maintained, the diquarks
cease to be bound [39]. That is, the addition of terms be-
yond the ladder approximation to the BS kernel, in a way
which preserves Goldstone’s theorem at every order, has
a minimal impact on solutions for the color-singlet meson
channels. In contrast, such terms have a significant impact
on the color-3̄ diquark channels. In ref. [39], it was demon-
strated that these contributions to the BS kernel beyond
ladder approximation are predominantly repulsive in the

color-3̄ diquark channel. It was furthermore demonstrated
in a simple confining quark model that the strength of
these repulsive contributions suffices to move the diquark
poles from the timelike P 2-axis and far into the complex
P 2-plane. While the particular, confining quark model is
in conflict with locality, the same effect was later veri-
fied within the NJL model [40]. This suggests that this
mechanism for diquark confinement, which eliminates the
possibility of producing asymptotic diquark states, might
hold independently of the particular realization of quark
confinement.

In a local quantum field theory, on the other hand, col-
ored asymptotic states do exist, for the elementary fields
as well as possible colored composites such as the diquarks,
but not in the physical subspace of the indefinite metric
space of covariant gauge theories. The analytic structure
of correlation functions, the holomorphic envelope of ex-
tended permuted tubes in coordinate space, is much the
same in this description as in quantum field theory with a
positive definite inner product (Hilbert) space. In particu-
lar, 2-point correlations in momentum space are generally
analytic functions in the cut complex P 2-plane with the
cut along the timelike real axis. Confinement is interpreted
as the observation that both absorptive as well as anoma-
lous thresholds in hadronic amplitudes are due only to
other hadronic states [41]. However, the implementation
of this algebraic notion of confinement seems much harder
to realize in phenomenological applications.

For the present purposes of developing a general frame-
work for the description of baryon bound states, the ques-
tion as to whether one should or should not model the
diquark correlations in terms of functions with or without
singularities for total timelike momentum P 2 is irrelevant.
However, we reiterate that the present framework is able
to accommodate both of these descriptions of confinement
with only straightforward modifications.

The goal of the present study is to assess the utility
of describing baryons as bound states of quark and di-
quark correlations, in a framework in which the diquark
correlations are assumed to be separable. (The term sepa-
rable refers to the property that a 4-point Green function
G(p, q;P ) be independent of the scalar qp, where q and
p are the relative momenta of the two incoming and out-
going particles, respectively, and P is the total momen-
tum.) To provide a simple demonstration of the general
formalism, and its application to the calculation of nu-
cleon form factors, we assume that the diquark correlator
corresponds to a single scalar-diquark pole at P 2 = m2

s

which is both separable and constituent-like. In this de-
scription, the (color-singlet) baryon thus is a bound state
of a color-3 quark and a color-3̄ (scalar) diquark correla-
tion.

Assuming identical quarks, consider the 4-point quark
Green function in coordinate space given by

Gαβγδ(x1, x2, x3, x4) =
〈T (qγ(x3)qα(x1)q̄β(x2)q̄δ(x4))〉 , (2.1)

where α, β, γ, and δ denote the Dirac indices of the quarks
and T denotes time-ordering of the quark fields qα(x).
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Fig. 1. The diquark pole in the 4-quark Green function.

The assumption of a separable diquark correlator, corre-
sponding to the diagram shown in fig. 1, can be written
in momentum space as Gsep

αβγδ(p, q, P ), where

Gsep
αγ,βδ(p, q, P ) := e−iPY

∫
d4X d4y d4z eiqze−ipy ×

eiPXGsep
αβγδ(x1, x2, x3, x4)

= D(P ) χγα(p, P )χ̄βδ(q, P ) , (2.2)

where D(P ) is the diquark propagator, X = σx1 + (1−
σ)x3, Y = (1−σ′)x2 + σ′x4, the total momentum parti-
tioning of the outgoing and incoming quark pairs are given
respectively by σ and σ′ both in [0, 1], and y = x1 − x3,
z = x2 − x4.

As described above, the separable form of the diquark
correlation of eq. (2.2) does not necessarily entail the ex-
istence of an asymptotic diquark state. The framework
developed herein makes no restrictions on the particu-
lar choice of the diquark propagator D(P ). Technically,
model correlations which mimic confinement through the
absence of timelike poles are easy to implement as shown
in ref. [36].

Nonetheless, for the purpose of demonstration, here we
employ the simplest form for this propagator correspond-
ing to a simple (scalar) diquark bound state in the 2-quark
Green function G of eq. (2.1). The appearance of such an
asymptotic diquark state requires the diquark propagator
to have a simple pole at P 2 = m2

s , where ms is the mass
of the diquark bound state, i.e.

D(P ) =
i

P 2 −m2
s + iε

. (2.3)

Then χ(p, P ) and its adjoint χ̄(p, P ) = γ0χ
†(p, P )γ0 are

the BS wave functions of the (scalar) diquark bound state
which are defined as the matrix elements of two quark
fields or two antiquark fields between the bound state and
the vacuum, respectively. Further details concerning these
definitions are given in appendix A.

It is convenient to define the truncated diquark BS am-
plitudes (sometimes referred to as BS vertex functions) χ̃
and ˜̄χ from the BS wave functions in eq. (2.2) by ampu-
tating the external quark propagators,

χ̃(p, P ) := S−1((1−σ)P+p)χ(p, P )S−1T(σP−p), (2.4)˜̄χ(p, P ) := S−1T(σP−p)χ̄(p, P )S−1((1−σ)P+p) . (2.5)

The convention employed here is to use the same symbols
for both the BS wave functions and the truncated BS am-
plitudes, with the latter denoted by a tilde. An important

observation made in appendix A, which is of use in the
following discussions, is that the for identical quarks, an-
tisymmetry under quark exchange constrains the diquark
BS amplitudes χ̃ to satisfy

χ̃(p, P ) = −χ̃T (−p, P )∣∣
σ↔(1−σ)

. (2.6)

Note that σ and (1−σ) have been interchanged here.
In principle, at this point one could go ahead and spec-

ify the form of the kernel for the quark-quark BSE in lad-
der approximation, and obtain diquark BS amplitudes in
much the same manner in which solutions for the mesons
are obtained. However, as discussed above, the appear-
ance of stable bound state solutions might be an artifact
of the ladder approximation rather than the true nature of
the quark-quark scattering amplitude. Therefore, for our
present purposes various simple model parametrisations
for diquark BS amplitudes are explored, rather than us-
ing a particular solution of the diquark homogeneous BSE.
The motivation is to explore the general aspects and im-
plications of using a separable diquark correlation for the
description of the nucleon bound state.

For separable contributions of the pole type (2.3), but
possibly complex mass (with Re(m2

s ) > 0), one readily
obtains standard BS normalization conditions to fix the
overall strength of the quark-quark coupling to the di-
quark for a given parametrisation of the diquark struc-
ture. These are obtained from the inhomogeneous quark-
quark BSE for the Green function of eq. (2.1) employing
pole dominance for P 2 sufficiently close to m2

s .
3 To sketch

their derivation consider the inhomogeneous BSE which is
of the general form

G(p, q, P ) =
(
G(0)−1

(p, q, P )−K(p, q, P )
)−1

. (2.7)

Here G(0) denotes the antisymmetric Green function for
the disconnected propagation of two identical quarks. The
definition of its inverse G(0)−1

and a brief discussion of
how to derive it may be found in appendix A. With the
simplifying assumption that the quark-quark interaction
kernel K be independent of the total diquark momentum
P , that is K(p, q, P ) ≡ K(p, q) (which is satisfied in the
ladder approximation for example), the derivative of G
with respect to the total momentum P gives the relation

−Pµ ∂

∂Pµ
G(p, q, P ) =

∫
d4k
(2π)4

d4k′

(2π)4
×

G(p, k, P )
(
Pµ ∂

∂Pµ
G(0)−1

(k, k′, P )
)
G(k′, q, P ). (2.8)

Upon substitution of G(p, q, P ) as given by eqs. (2.2)
and (2.3), and equating the residues of the most singu-
lar terms, one obtains the non-linear constraint for the

3 For other separable contributions, e.g., of the form of non-
trivial entire functions for which one necessarily has a singular-
ity at |P 2| → ∞, the use of the inhomogeneous BSE to derive
normalization conditions relies on the existence of full solutions
to (2.7) of the separable type.
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normalization of the diquark BS amplitudes χ and χ̄,

1 !=
−i
4m2

s

∫
d4p
(2π)4

×{
tr

(
ST (pβ)˜̄χ(p, P )(

P
∂

∂P
S(pα)

)
χ̃(p, P )

)
+ tr

(˜̄χ(p, P )S(pα)χ̃(p, P )(P ∂

∂P
ST (pβ)

))}
,(2.9)

where pα = p+(1−σ)P and pβ = −p+σP , i.e. P = pα+pβ
and p = σpα− (1−σ)pβ . The scalar diquark contribution,
relevant to the present study of the nucleon bound state,
is color-3̄ and isosinglet. Lorentz covariance requires its
Dirac structure to be the sum of four independent con-
tributions, each proportional to a function of two inde-
pendent momenta. For simplicity only a single term is
maintained here, which has the following structure:

χ̃(p, P ) = γ5C
1
Ns
P̃ (p2, pP ) , (2.10)

where C is the charge conjugation matrix (C = iγ2γ0 in
the standard representation). The normalization constant
Ns is fixed from the condition given in eq. (2.9) for a given
form of P̃ (p2, pP ).

It may seem reasonable to neglect the dependence of
this invariant function on the scalar pP ; such a simplifi-
cation would yield the leading moment of an expansion of
the angular dependence in terms of orthogonal polynomi-
als, which has been shown to provide the dominant con-
tribution to the meson bound state amplitudes in many
circumstances. However, in the present case the antisym-
metry of the diquark wave function, cf. eqs. (2.6), entails
that

P̃ (p2, pP ) = P̃ (p2,−pP )
∣∣∣
σ↔(1−σ)

. (2.11)

For σ �= 1/2 and thus for p̄ := p
∣∣
σ↔(1−σ)

�= p, it is not
possible to neglect the pP dependence in the amplitude
without violating the quark-exchange antisymmetry. To
maintain the correct quark-exchange antisymmetry, we as-
sume instead that the amplitude depends on both scalars,
p2 and pP in a specific way. In particular, we assume the
diquark BS amplitude is given by a function that depends
on the scalar

x := pαpβ − σ(1− σ)m2
s = −(1− 2σ)pP − p2

= (1− 2σ)p̄P − p̄2 (2.12)

with p̄ = (1− σ)pα − σpβ and p{α,β} as given above. For
equal momentum partitioning between the quarks in the
diquark correlation σ = 1/2, the scalar x reduces to the
negative square of the relative momentum, x = −p2. The
two scalars that may be constructed from the available
momenta p and P (noting that P 2 = m2

s is fixed) which
have definite symmetries under quark exchange are given
by the two independent combinations pαpβ (which is es-
sentially the same as above x) and p2α − p2β . The latter

may only appear in odd powers which are associated with
higher moments of the BS amplitude. Hence, these are
neglected by setting

P̃ (p2, pP ) ≡ P (x), (2.13)

which can be shown to satisfy the antisymmetry constraint
given by eq. (2.11) ∀σ ∈ [0, 1]. Finally, the diquark BS
normalization Ns, as obtained from eq. (2.9), is given by

N2
s =

−i
4m2

s

∫
d4p
(2π)4

P 2(x)×

P
∂

∂P
tr

[
S(p+ (1−σ)P )S(−p+ σP )] . (2.14)

The numerical results presented in the following sec-
tions explore the ramifications of several Ansätze for P (x),

Pn-P(x) =
(

γn
x+ γn

)n

or Pexp(x) = exp {−x/γexp}, (2.15)

where the integer n = 1, 2... and corresponds to monopole,
dipole,... diquark BS amplitudes. Their widths γn, γEXP

are determined from the nucleon BSE by varying them
until the diquark normalization given by eq. (2.14) and
coupling strength g2s necessary to produce the correct nu-
cleon bound state mass are equal. This is carried out nu-
merically and described in detail in sect. 3.

For completeness, various Gaussian forms that peak
for values of x = x0 ≥ 0,

PGau(x) = exp {−(x− x0)2/γ2Gau} , (2.16)

are also explored. Such forms with finite x0 were suggested
for diquark amplitudes as a result of a variational calcula-
tion of an approximate diquark BSE in ref. [42] and have
been used in the nucleon calculations of ref. [22]. Therein,
a fit to the Gaussian form given by ref. [42] (and eq. (2.16)
above) was employed with a width of γGau � 0.11GeV2

and x0/γGau � 1.7. From a calculation within the present
framework, which is described in sect. 3, we observe that
the necessary value for γGau to obtain a reasonable nu-
cleon mass is about an order of magnitude smaller than
the value given in ref. [22]. Furthermore in sect. 6, we ob-
serve that the effect of a finite x0 on the electric form
factor of the neutron rules out the use of a Gaussian form
with x0 �= 0.

Some of the parametrisations used for diquark correla-
tions in previous quark-diquark model studies of the nu-
cleon [35–37] correspond to neglecting the substructure of
diquarks entirely; this may be reproduced in the present
framework by setting P̃ (p2, pP ) = 1. By neglecting the di-
quark substructure, the diquark BS normalizations such
as Ns here are not well defined. The strengths of the
quark-diquark couplings are undetermined and chosen as
free adjustable parameters of the model (one for each di-
quark channel maintained). In the present, more general
approach, these couplings are determined by the normal-
izations of the respective diquark amplitudes. At present
this is the scalar diquark normalization Ns alone which in
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turn determines the coupling strength gs = 1/Ns between
the quark and diquark which binds the nucleon.

The aim of our present study is to generalize the notion
of diquark correlations by going beyond the use of a point-
like diquark and include a diquark substructure in a form
similar to that of mesons. In the most general calculation
of the three-body bound state, the strength of the quark-
diquark coupling is not at one’s disposal; it arises from
the elementary interactions between the quarks. By us-
ing the diquark BS normalization condition of eq. (2.14),
we can assess whether the quark-diquark picture of the
nucleon is still able to provide a reasonable description
of the nucleon bound state if the coupling strength is ob-
tained from the diquark BSE rather than forcing the quark
and diquark to bind by adjusting their couplings freely.
Whether the quark-diquark coupling is sufficiently strong
to produce bound baryons will eventually be determined
by the strength of the quark-quark interaction kernel that
leads to the diquark BS amplitude.

Finally, the use of a diquark BS amplitude with a fi-
nite width improves on the previous calculations in yet
another respect. Without the substructure of the diquark,
an additional ultraviolet regularization had to be intro-
duced in the exchange kernel of the BSE for the nucleon
in refs. [35–37]. In the present study, the finite-sized sub-
structure of the diquark leads to a nucleon BSE which is
completely regular in the ultraviolet in a natural way.

In this section, we have discussed some general fea-
tures of the diquark amplitude employed in our present
study. The important observations are the implications of
its antisymmetry under quark exchange which constrains
the functional dependence on the quark momenta, and the
derivation of the BS normalization condition, eq. (2.14), to
fix the quark-diquark coupling strength. By taking these
into account, we will find that the precise form of the
Ansatz for the diquark BS amplitude P (x) has little qual-
itative influence on the resulting nucleon amplitudes as
long as P (x) falls off by at least one power of x for large
x corresponding to a large spacelike relative momentum.

3 The quark-diquark Bethe-Salpeter equation
of the nucleon

By neglecting irreducible 3-quark interactions in the ker-
nel of the Faddeev equation giving the 6-point Green func-
tion that describes the fully interacting propagation of 3
quarks, the Dyson series for this 6-point Green function
reduces to a coupled set of two-body Bethe-Salpeter equa-
tions, see for example, ref. [18]. As discussed in the previ-
ous section, for the purpose of demonstrating the frame-
work developed herein, we choose to employ constituent
quark and diquark propagators. However, the framework
itself is much more general. The assumptions under which
it is developed require only that the irreducible 3-quark
interactions are neglected in the nucleon Faddeev kernel
and that the diquark correlations be well parametrised by
a sum of separable terms (which may or may not have
poles associated with asymptotic diquark states).
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Fig. 2. The quark-exchange kernel of the nucleon BSE.

Maintaining only the (flavor-singlet, color-3̄) scalar di-
quark channel in these correlations, corresponding to eqs.
(2.2) and (2.3), the appearance of a stable nucleon bound
state coincides with the development of a pole in the Green
function Gαβ describing the fully interacting (spin-1/2)
quark and (scalar) diquark correlations which is of the
form

Gpole
αβ (p, k, Pn) =(

ψ(p, Pn)
i(P/n +Mn)
P 2
n −M2

n + iε
ψ̄(−k, Pn)

)
αβ

. (3.1)

Here k and p are the relative momenta between the quark
and diquark, incoming and outgoing, respectively, Pn is
the four-momentum of the nucleon with massMn, α and β
denote the Dirac indices of the quark, and the nucleon BS
wave function ψ(p, Pn) is related to its adjoint according
to

ψ̄(p, Pn) = γ0ψ
†(−p, Pn)γ0 = CψT (p,−Pn)C−1 . (3.2)

The truncated nucleon BS amplitude ψ̃ is defined as

ψ(p, Pn) = D((1−η)Pn − p)S(ηPn + p)ψ̃(p, Pn) , (3.3)

where η ∈ [0, 1] is the fraction of the nucleon momen-
tum Pn carried by the quark. The resulting homogeneous
Bethe-Salpeter equation for the nucleon bound state reads

ψ̃αβ(p, Pn) =
∫

d4k
(2π)4

Kαγ(p, k;Pn)ψγβ(k, Pn) , (3.4)

whereKαβ(p, k;Pn) is the kernel of the nucleon BSE which
represents the exchange of one of the quarks within the
diquark with the spectator quark. Maintaining the quark-
exchange antisymmetry of the diquark correlations, this
kernel provides the full antisymmetry within the nucleon
(i.e. Pauli’s principle) in the quark-diquark model [15].
The exchange kernel is shown in fig. 2 and given by

Kαβ(p, k;Pn) =

−1
2
χ̃αγ(p1, q + pα)STγδ(q) ˜̄χTδβ(p2, q + pβ) (3.5)

=
1

2N2
s

P (x1)P (x2) Sαβ(q) , (3.6)

where the factor −1/2 arises from the flavor coupling be-
tween the quark and diquark and p1 and p2 are the relative
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momenta of the quarks within the incoming and outgoing
diquark, respectively, such that

p1 = σpα − (1−σ)q , and p2 = (1−σ′)q − σ′pβ . (3.7)

The respective momentum partitionings are σ and σ′ and
need not be equal. The total momenta of the incoming and
the outgoing diquark are q+pα and q+pβ . The momentum
q of the exchanged quark is expressed in terms of the total
nucleon momentum Pn and relative momenta k and p as

q = (1−2η)Pn − p− k . (3.8)

Using the definitions of q and the quark momenta pα =
ηPn + p and pβ = ηPn + k, the relative momenta in the
diquark BS amplitudes can be expressed as

p1 = (ση − (1−σ)(1−2η))Pn + (1−σ)k + p , (3.9)
p2 = ((1−σ′)(1−2η)− σ′η)Pn − k − (1−σ′)p . (3.10)

The corresponding arguments of the quark-exchange-anti-
symmetric diquark BS amplitudes follow readily from
their definition in eq. (2.12),

x1 = −p21 − (1−2σ)((1−η)p1Pn − p1k) , (3.11)
x2 = −p22 + (1−2σ′)((1−η)p2Pn − p2p) . (3.12)

Before proceeding, it is worth summarizing some of the
important aspects of this framework:

1. The dependence of the exchange kernel on the total
nucleon bound state momentum Pn is crucial in order
to obtain the correct relationship between the elec-
tromagnetic charges of the proton and neutron bound
states and the normalizations of their BS amplitudes.

2. The momentum q of the exchanged quark is indepen-
dent of the nucleon momentum Pn only for the partic-
ular value of momentum partitioning η = 1/2.

3. The relative momenta p1 and p2 of the quarks within
the diquarks are only independent of the total momen-
tum Pn of the nucleon for the particular choice:

σ = σ′ =
1− 2η
1− η . (3.13)

The symmetric arguments of x1 and x2 in the di-
quark BS amplitudes are independent of the total mo-
mentum Pn only if, in addition to the above criteria,
σ = σ′ = 1/2 as well, and hence η = 1/3. In fact, this
conclusion can be further generalized: Any exchange-
symmetric argument of the diquark amplitude can dif-
fer from the definition of eq. (2.12) only by a term
that is proportional to the square of the total diquark
momentum. From this, it is possible to show that the
diquark BS amplitudes can be independent of Pn only
if η = 1/3. This is shown in appendix B.

Unlike the ladder-approximate kernels commonly em-
ployed in phenomenological studies of the meson BSE,
the quark-exchange kernels of the BSEs for baryon bound
states, such as the one depicted in fig. 2, necessarily de-
pend on the total momentum of the baryon Pn for all

values of η ∈ [0, 1]. This has important implications on
the normalization of the bound state BS amplitudes as
well as on the calculation of the electromagnetic charges
of the bound states. In particular, considerable extensions
of the framework beyond the impulse approximation are
required in the calculation of electromagnetic form fac-
tors in order to ensure that the electromagnetic current is
conserved for baryons. This issue is explored in detail in
sect. 5.

The form of the pole contribution arising from the nu-
cleon bound state to the quark-diquark 4-point correlation
function in eq. (3.1) constrains the nucleon BS amplitude
to obey the identities

ψ̃(p, Pn)Λ+(Pn) = ψ̃(p, Pn) , (3.14)

Λ+(Pn)˜̄ψ(p, Pn) = ˜̄ψ(p, Pn) , (3.15)

where Λ+(Pn) = (P/n + Mn)/2Mn. It follows from this
that the most general Lorentz-covariant form of the nu-
cleon BS amplitude can be parametrized by

ψ̃(p, Pn) = S1(p, Pn)Λ+(Pn)
+S2(p, Pn)Ξ(p, Pn)Λ+(Pn) , (3.16)˜̄ψ(p, Pn) = S1(−p, Pn)Λ+(Pn)
+S2(−p, Pn)Λ+(Pn)Ξ(−p, Pn) , (3.17)

where Ξ(p, Pn) = (p/ − pPn/Mn)/Mn, and S1(p, Pn) and
S2(p, Pn) are Lorentz-invariant functions of p and Pn. This
provides a separation of the positive and negative energy
components of the nucleon BS amplitude. In appendix B,
some of the consequences of this decomposition are ex-
plored. In particular, it allows one to rewrite the homoge-
neous BSE of eq. (3.4) in a compact manner, in terms of
a 2-vector ST (p, Pn) := (S1(p, Pn), S2(p, Pn)) as

S(p, Pn) =
1

2N2
s

∫
d4k
(2π)4

P (x1)P (x2)D(ks)T (p, k, Pn)S(k, Pn), (3.18)

where ks = (1−η)Pn−k and T (p, k, Pn) is a 2×2 matrix in
which each of the four elements is given by a trace over the
Dirac indices of the quark propagator S(kq) (with kq =
ηPn+k), the propagator S(q) of the exchanged quark and
a particular combination of Dirac structures derived from
the decomposition of the nucleon amplitude in eq. (3.16),
see appendix B.

Upon carrying out these traces, the resulting BSE is
transformed into the Euclidean metric by introducing 4-
dimensional polar coordinates corresponding to the rest
frame of the nucleon according to the following prescrip-
tions (where “→” denotes the formal transition from the
Minkowski to the Euclidean metric):

p2 → −p2 , P 2
n →M2

n , pPn → iMnp y , (3.19)
and S(p, Pn) → S(p, y) .

Written in terms of these variables, the nucleon BS ampli-
tude is a function of the square of the relative momentum
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Fig. 3. The first 5 moments of the nucleon BS amplitudes S1

(top) and S2 (bottom).

p2 and the cosine y ∈ [−1,+1] of the azimuthal angle be-
tween the four-vectors p and Pn. The dependence of the
nucleon BS amplitudes S(p, y) on the angular variable y
is approximated by an expansion to the order N in terms
of the complete set of Chebyshev polynomials Tn(y),

S(p, y) �
N−1∑
n=0

(−i)n Sn(p)Tn(y) , (3.20)

Sn(p) = in
2
N

N∑
k=1

S(p, yk)Tn(yk) , (3.21)

where yk = cos (π(k − 1/2)/N) are the zeros of the
Chebyshev polynomial TN (y) of degree N in y. Here, we
employ Chebyshev polynomials of the first kind with a
convenient (albeit non-standard) normalization for the ze-
roth Chebyshev moment from setting T0 = 1/

√
2. The

explicit factor of (−i)n is introduced into eq. (3.20) to en-
sure that the moments Sn(p) are real functions of positive
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η
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Fig. 4. Dependence of λ/N2
s on η for fixed σ = σ′ = 1/2

(solid) and with σ, σ′ from eq. (3.13) (dashed). The width γ2

is fixed to yield λ/N2
s = 1 at η = 1/3.

p ≡
√
p2 for all n. The BSE for these moments of the

nucleon BS amplitude is then

Sm(p) =

− 1
2N2

s

∫
k3dk
(4π)2

N−1∑
n=0

im−n Tmn(p, k)Sn(k), (3.22)

where the (2N × 2N) matrix Tmn(p, k) is obtained from
T (p, k, Pn) by expanding in terms of Chebyshev polyno-
mials both amplitudes S in the nucleon BSE of eq. (3.18);
that is, summing over the yk on both sides of eq. (3.18)
according to eq. (3.21) and using eq. (3.20) for the BS
amplitude on the right-hand side. The definition of the
matrix Tmn appearing in eq. (3.22) furthermore includes
the explicit diquark propagator and BS amplitudes P (x1)
and P (x2) of the integrand in eq. (3.18) as well as the
integrations over all angular variables. Its exact form is
provided in appendix B.

In the calculations presented herein, we restrict our-
selves to the use of free propagators for constituent quark
and diquark, with masses mq and ms respectively, as the
simplest model to parametrize the quark and diquark cor-
relations within the nucleon. Measuring all momenta in
units of the nucleon bound state mass Mn leaves mq/Mn

and ms/Mn as the only free parameters. Using for the
scalar diquark amplitude P (x) the forms of eqs. (2.15) or
(2.16) with fixed widths γ, the homogeneous BSE for the
nucleon in eq. (3.4) is converted into an eigenvalue equa-
tion of the form

λ ψ̃(p, Pn) =
∫

d4k
(2π)4

N2
sK(p, k, Pn)ψ(p, Pn) , (3.23)

with the additional constraint that λ = N2
s (note that

N2
sK is independent of Ns). This equation is solved iter-

atively and the largest eigenvalue λ is found which corre-
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sponds to the nucleon ground state. To implement the con-
straint, we calculate the diquark normalization N2

s from
eq. (2.14) and compare it to the eigenvalue λ. This pro-
cedure is repeated with a new value for the width γ of
the diquark BS amplitude until the eigenvalue obtained
from the BSE agrees with the normalization integral in
eq. (2.14); that is, until the constraint λ = N2

s is satisfied.
A typical solution of the nucleon BSE is shown in fig. 3.

Five orders were retained in the Chebyshev expansion.
The figure depicts the relative importance of the first four
Chebyshev moments of the nucleon amplitudes S1(p, Pn)
and S2(p, Pn). The respective results for their fifth mo-
ments are too small (≤ 10−4) to be distinguished from
zero on the scale of fig. 3. This provides an indication for
the high accuracy obtained from the Chebyshev expan-
sion to this order. This particular solution, which will be
shown to provide a good description of the electric form
factors in sect. 6, was obtained for the dipole form of the
diquark amplitude, i.e. from eq. (2.15) with n = 2, us-
ing mq = 0.62Mn and ms = 0.7Mn (with σ = σ′ = 1/2,
η = 1/3). The value for the corresponding diquark width
γ2, necessary to yield λ = N2

s (to an accuracy of 10−3),
resulted thereby to be γ2 = (0.294Mn)2.

The dependence of the BS eigenvalue on the momen-
tum partitioning parameter η is shown in fig. 4. The com-
plex domains of the constituent quark and diquark mo-
mentum variables, k2q and k2s respectively, that are sam-
pled by the integration over the relative momentum k in
the nucleon BSE are devoid of poles for 1−ms/Mn < η <
mq/Mn. The pole in the momentum q2 of the exchanged
quark of the kernel in eq. (3.6) is avoided by imposing
the further bound η > (1 − mq/Mn)/2 on the momen-
tum partitioning parameter. Therefore, with the present
choice of constituent masses it is for values of η in the
range 0.3 < η < 0.6, for which our numerical methods can
yield stable results.

In principle, the integrations necessary to solve the nu-
cleon BSE should always be real and never lead to an
imaginary result (since mq +ms > Mn). More refined nu-
merical methods would be necessary, however, when inte-
grations were to be performed in the presence of the poles
in the constituent propagators that occur within the inte-
gration domain for values of η outside the above limits.

The momentum partitioning η within the nucleon is
not an observable. Hence, for any value of η for which our
numerical results are stable, we expect the eigenvalue of
the nucleon BSE λ (which implicitly determines the nu-
cleon mass) to be independent of η. In fig. 4, the depen-
dence on η of the nucleon BSE eigenvalue λ is explored
using a fixed value for σ = σ′ = 1/2 (solid curve) and us-
ing the values of σ and σ′ from eq. (3.13) (dashed curve).

In the first case, the arguments of the diquark ampli-
tudes simplify to xi = −p2i with p1 = −(1−3η)Pn/2 +
p + k/2 and p2 = (1−3η)Pn/2 − k − p/2. This implies
that the real parts of xi are guaranteed to be positive
only for η = 1/3. For values of η �= 1/3, a negative contri-
bution arises from the timelike nucleon bound state mo-
mentum Pn. If the n-pole forms for the diquark ampli-
tudes are employed, this results in the appearance of ar-
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Fig. 5. The leading moments of the nucleon BS amplitudes S1

(top) and S2 (bottom) for the diquark amplitudes (2.15, 2.16)
with mq adjusted to yield S1,0(p)|p=0.2Mn = 1/2.

tificial poles whenever (1−3η)2M2
n/4 ≥ γn. The value of

γ2 = (0.294Mn)2, as it results here, would entail the ap-
pearance of a pole for η ≥ 0.53. This explains why our
numerical procedure becomes unstable as η approaches
the value 1/2 in this case.

No such timelike contribution to the xi arises in the
second case shown in fig. 4. Here, for σ = σ′ = (1−
2η)/(1−η) the relative momenta pi are independent of
Pn, and there are no terms ∝ M2

n in xi; see, for exam-
ple, eqs. (3.11), (3.12). However, as η → 1/2, we find that
σ, σ′ → 0 and the diquark normalization integrals are then
affected by singularities.

In the restricted range allowed to η, the results for the
nucleon BSE obtained herein are found to be independent
of η to very good accuracy when the equal momentum
partitioning between the quark in the diquarks is used,
σ = σ′ = 1/2. In this case, the diquark normalization in
eq. (2.14) yields a fixed value forN2

s and any η dependence
of the ratio λ/N2

s has to arise entirely from the nucleon
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BSE. The η independence of λ thus demonstrates that the
solutions to the nucleon BSE are under good control.

The more considerable η-dependence observed for σ =
σ′ = (1−2η)/(1−η) arises from the dependence of N2

s

on σ, σ′. Here, the limitations of the model assumptions
for the diquark BS amplitudes are manifest. The depen-
dence of the diquark BS amplitudes on the diquark bound
state mass, higher Chebyshev moments (which have been
neglected) and the Lorentz structures (which we have ne-
glected), are all responsible for this observed σ depen-
dence. Such a dependence would not occur, had the di-
quark amplitudes employed herein been calculated from
the diquark BSE.

For the numerical calculations of electromagnetic form
factors presented in sect. 5, we therefore choose to restrict
the model to σ = σ′ = 1/2 and vary η. From the observed
independence of the nucleon BSE solutions from η (when
σ = σ′ = 1/2), one expects to find that calculated nucleon
observables, such as the electromagnetic form factors, will
display a similar independence from η as well.

In fig. 5 the zeroth Chebyshev moments S1,0(p) and
S2,0(p) obtained from a numerical solution of the nucleon
BSE with σ = σ′ = 1/2 and η = 1/3 are shown, for various
diquark amplitudes of the forms given in eqs. (2.15) and
eq. (2.16) with x0 = 0. To provide a comparison between
these different forms of diquark BS amplitude, we have
chosen to keep the diquark mass fixed and vary the quark
mass until a solution of the nucleon BSE was found with
the property that

S1,0(p)|p=0.2Mn

!= 1/2 . (3.24)

The resulting values for mq along with the corresponding
diquark widths and couplings gs ≡ 1/Ns are summarized
in Table 1.

We observe that the mass of the quark required to
satisfy the condition in eq. (3.24) tends to smaller val-
ues for higher n-pole diquark amplitudes. On the other
hand, for fixed constituent quark (and diquark) mass the
higher n-pole diquark amplitudes lead to wider nucleon

Table 1. Summary of parameters used for the various diquark
amplitudes P (x), cf. eqs. (2.15), (2.16).

Fixed width S1(p)|p=0.2Mn = 1/2, see fig. 5:

P (x) ms [Mn] mq [Mn]
√

γ [Mn] gs = 1/Ns

n = 1 0.7 0.685 0.162 117.1
n = 2 0.7 0.620 0.294 91.80
n = 4 0.7 0.605 0.458 85.47
n = 6 0.7 0.600 0.574 84.37
n = 8 0.7 0.598 0.671 83.76
EXP 0.7 0.593 0.246 82.16
GAU 0.7 0.572 0.238 71.47

Fixed masses, see fig. 6

n = 1 0.7 0.62 0.113 155.8
n = 2 0.7 0.62 0.294 91.80
n = 4 0.7 0.62 0.495 81.08
n = 6 0.7 0.62 0.637 78.61
EXP 0.7 0.62 0.283 74.71
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Fig. 6. The moments S1,0 (top) and S2,0 (bottom) of the nu-
cleon amplitudes for the diquark amplitudes of eqs. (2.15,2.16)
with fixed masses, ms = 0.7Mn, mq = 0.62Mn.

amplitudes. This is shown in fig. 6 and the correspond-
ing diquark widths and couplings are given in the lower
part of Table 1. The mass values hereby correspond to the
results shown in the previous fig. 5 for n = 2.

The qualitative effect of shifting the maximum in the
Gaussian forms in eq. (2.16) for the diquark amplitudes
by a finite amount x0 is shown in fig. 7. The curve for
x0 = 0 resembles the Gaussian result given in fig. 5 with
masses ms = 0.7Mn and mq = 0.572Mn, which are kept
fixed in the results for finite shifts x0. The corresponding
widths and normalizations of these forms for the diquark
amplitudes are given in Table 2. While the widths γ and
the couplings gs are not free parameters in our approach,
the additional parameter x0/γGau introduced into the form
of the diquark BS amplitude is free to vary. In contrast
to the Gaussian form of the model diquark BS amplitude
employed in ref. [22] with x0/γGau = 0.19/0.11 � 1.73,
by implementing the diquark normalization condition, we
find that the width must be about 30 times smaller to pro-
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Table 2. Width and normalizations of Gaussian amplitudes,
eq. (2.16) for various shifts x0, see fig. 7 (top).

ms = 0.7Mn, mq = 0.572Mn:
x0/γGau

√
γGau [Mn] gs = 1/Ns

0 0.238 71.47
1/4 0.209 69.09
1/2 0.181 72.64
3/4 0.154 81.96
1 0.130 97.75
5/4 0.109 121.3
3/2 0.091 154.3
7/4 0.077 198.5

vide a sufficient interaction strength gs = 1/N2
s necessary

to bind the nucleon.
To provide for a closer comparison with the results

of ref. [22], we have also solved the nucleon BSE using
the values of parameters employed in that study. That
is, we have solved the nucleon BSE using PGau(x) with
the parameter x0/γGau = 0.19/0.11 and using the con-
stituent quark and diquark masses mq = 0.555Mn and
ms = 0.7Mn, respectively. (Note that we use the nucleon
mass as the intrinsic momentum scale of our framework,
whereas the momentum scale employed in ref. [22] was
1 GeV.) The value employed in ref. [22] for the diquark
mass ms = 0.568 GeV implies that Mn = 811 MeV in
order to compare to our calculations (with ms = 0.7Mn),
and our value for the quark mass (mq = 0.555Mn) thus
corresponds to mq = 0.45 GeV. With these parameters,
we obtain γGau = (0.216Mn)2 = 0.308 · 10−2GeV2, which
may be compared to γGau = (0.409Mn)2 = 0.11GeV2 used
in ref. [22].

The same results for the nucleon amplitudes as shown
above are used for the calculations of the electromagnetic
form factors of the proton and the neutron in sect. 6. We
will show that when n-pole diquark BS amplitudes with
n = 2 and n = 4 are employed, one obtains results for the
electromagnetic form factors that are in good agreement
with the phenomenological dipole fit for the electric pro-
ton form factor, while higher powers or exponential forms
tend to produce form factors which decrease too fast with
increasing momentum transfer Q2. We also show that use
of a Gaussian form for the diquark BS amplitude with
x0 �= 0 leads to neutron electric form factor that has a
qualitatively different behavior than that obtained by us-
ing the other model forms of diquark BS amplitudes. Fur-
thermore, this form leads to nodes in the neutron electric
form factor for small Q2, a feature for which there is no
experimental evidence.

4 Normalization of the nucleon
Bethe-Salpeter amplitude

In order to reproduce the correct electromagnetic charges
of the physical asymptotic states, it is required that their
Bethe-Salpeter (or Faddeev) amplitudes be normalized ac-
cording to the normalization conditions obtained from the
fully interacting Green functions of the elementary fields.
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Fig. 7. The moment S1,0 for the Gaussian diquark amplitudes
of eq. (2.16) with various shifts x0/γGau (top), see Table 2,
and a comparison (bottom) of our result for x0/γGau = 19/11
(with ms = 0.7Mn, mq = 0.555Mn) with a result we obtain
from using γGau = 0.11GeV2 as in ref. [22].

These normalization conditions are derived from inhomo-
geneous BS (or Faddeev) equations. In the present frame-
work, the quark-diquark 4-point Green function is given
by (suppressing Dirac indices)

G(p, q, P ) =
(
G(0)−1

(p, q, P )−K(p, q, P )
)−1

. (4.1)

Here, K(p, q, P ) is the quark-exchange kernel of eq. (3.6)
depicted in fig. 2, and G(0)(p, q, P ) is the disconnected
contribution to this Green function, given by

G
(0)
αβ(p, k, P ) := (2π)4δ4(p− k)Sαβ(kq)D(ks)δηη′ , (4.2)

with kq = ηP +k and ks = (1−η)P −k. Taking the deriva-
tive of G(p, k, P ) with respect to the total momentum P
and then examining the leading contributions in the limit
that P 2 → M2

n which arise from the nucleon pole contri-
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bution from eq. (3.1), one finds

Mn Λ
+(Pn)

!= i

∫
d4p
(2π)4

d4k
(2π)4

×

ψ̄(−p, Pn)
(
Pµ

∂

∂Pµ
G−1(p, k, P )

)
P=Pn

ψ(k, Pn). (4.3)

The most important difference in normalizing the ampli-
tudes in the Bethe-Salpeter framework developed here and
a genuine two-body BSE, is the dependence of the BS ker-
nel on the total momentum of the bound state P . In phe-
nomenological studies of 2-body bound states BS kernels,
such as ladder-approximate ones for example, are most
commonly employed in a form which does not depend on
the bound state momentum. However, in the present ap-
proach, the original 3-body nature of the nucleon bound
state requires the exchange kernel of the reduced BS equa-
tion for quark and diquark to depend on the total momen-
tum Pn of the nucleon. In particular, when η �= 1/2, the
propagator for the exchanged quark in the kernel depends
on the total momentum Pn and for η �= 1/3, the diquark
BS amplitudes depend on Pn. This added complication,
which is easily avoided by ladder-approximate studies of
meson bound states, is unavoidable for studies of baryons.
Thus, the normalization condition for the nucleon will al-
ways contain contributions from the derivative of the ker-
nel.

Following the above procedure, one obtains a normal-
ization condition of the form

1 != ηNq + (1− η)ND + (1− 2η)NX + (1− 3η)NP, (4.4)

where

Nq = − Pµ

2Mn
i

∫
d4k
(2π)4

D(ks)×

tr
[˜̄ψ(−k, P )(

∂

∂kµq
S(kq)

)
ψ̃(k, P )

]
, (4.5)

ND = − Pµ

2Mn
i

∫
d4k
(2π)4

(
∂

∂kµs
D(ks)

)
×

tr
[˜̄ψ(−k, P )S(kq)ψ̃(k, P )], (4.6)

NX = − Pµ

2Mn
i

∫
d4p
(2π)4

d4k
(2π)4

1
2N2

s

P (−p21)P (−p22)×

tr
[
ψ̄(−p, P )

(
∂

∂qµ
S(q)

)
ψ(k, P )

]
, (4.7)

NP = − Pµ

2Mn
i

∫
d4p
(2π)4

d4k
(2π)4

1
2N2

s

×(
p1µ P

′(−p21)P (−p22) − p2µ P (−p21)P ′(−p22)
)
×

tr
[
ψ̄(−p, P )S(q)ψ(k, P )

]
, (4.8)

with p1 = −(1−3η)P/2 + p + k/2 , p2 = (1−3η)P/2 −
p/2− k , for σ=σ′=1/2.

It is clear from eq. (4.4) that either the exchanged
quark or the presence of a diquark substructure, or in

general both, provide non-vanishing contributions to the
nucleon BS normalization. Maintaining these terms is crit-
ical for the correct determination of the electromagnetic
charges of baryons since the nucleon normalization and
electromagnetic form factors are intimately related by the
differential Ward identities.

In the following section, we show that in calculations
of the electromagnetic form factors of the nucleon, use of
the usual impulse approximation [43] (which includes only
contributions arising from the coupling of the photon to
the quark and diquark, that are related to the terms Nq

and ND in the normalization condition), by itself is insuf-
ficient to guarantee electromagnetic current and charge
conservation of the nucleon.

One of the additional contributions required for the
proper calculation of electromagnetic form factors that
goes beyond the usual impulse approximation is the cou-
pling of the photon to the exchanged-quark in the kernel
from eq. (3.5). We will show that this term provides a
crucial contribution to the nucleon electromagnetic form
factors and helps maintain electromagnetic current con-
servation of the nucleon. It is interesting to note that the
contribution of this term is important even in the special
case that η = 1/2 in which the term NX does not con-
tribute to the normalization condition of eq. (4.4).

We will show in the next section that in the presence
of a diquark with a non-trivial substructure, additional,
direct couplings of the photon to this substructure are
required to maintain current conservation. Similar contri-
butions have previously been found important in several
other contexts [44,45]. These couplings are commonly re-
ferred to as “seagulls”.

We conclude this section by summarizing that the re-
spective contributions to the nucleon normalization con-
dition of eq. (4.4) given in eqs. (4.5) to (4.6) correspond to
the usual impulse approximate contributions arising from
the constituent quark and diquark, plus the contribution
from the exchange-quark in the BS kernel, and the seagull
contributions which arise from the quark substructure in
the diquark correlations.

5 The electromagnetic current in impulse
approximation and beyond

The electromagnetic current operator J em
µ (x) in impulse

approximation is determined by the disconnected contri-
butions from the electromagnetic couplings of the specta-
tor quark (Jµq ) and the scalar diquark (JµD) which in the
Mandelstam formalism are calculated from the following
momentum space kernels [43]:

Jµq (p, P
′; k, P ) = (2π)4δ4(p− k − η̂Q)×
qq Γ

µ
q (ηP

′ + p, ηP + k) D−1(η̂P − k), (5.1)

JµD(p, P
′; k, P ) = (2π)4δ4(p− k + ηQ)×
qD Γ

µ
D(η̂P

′ − p, η̂P − k) S−1(ηP + k), (5.2)

with Q = P ′−P and η+η̂ = 1. The charge of the spectator
quark in the nucleon is denoted qq, the charge of the scalar
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diquark is qD, and qq + qD = 1 and 0 for the proton and
neutron, respectively. The Ward-Takahashi identities for
the quark and diquark electromagnetic vertices are

QµΓ
µ
q (p+Q, p) = iS−1(p+Q) − iS−1(p) , (5.3)

QµΓ
µ
D(p+Q, p) = iD−1(p+Q) − iD−1(p) . (5.4)

From these one can immediately write down the nucleon
matrix elements for the divergences of the correspond-
ing Mandelstam currents between initial and final nucleon
states with momentum and spin P, s and P ′, s′, respec-
tively, as

〈P ′, s′|∂µJµq (0)|P, s〉 = qq

∫
d4k
(2π)4

×{
ū(P ′, s′) ˜̄ψ(−(k + η̂Q), P ′)ψ(k, P )u(P, s)

− ū(P ′, s′) ψ̄(−(k + η̂Q), P ′)ψ̃(k, P )u(P, s)
}
, (5.5)

〈P ′, s′|∂µJµD(0)|P, s〉 = qD

∫
d4k
(2π)4

×{
ū(P ′, s′) ˜̄ψ(−(k − ηQ), P ′)ψ(k, P )u(P, s)

− ū(P ′, s′) ψ̄(−(k − ηQ), P ′)ψ̃(k, P )u(P, s)
}
. (5.6)

Here, we insert the BSEs for the amplitudes ψ̃ and ˜̄ψ which
can be written in the compact form,

ψ̃(p, P ) =
∫

d4k
(2π)4

K(p, k, P )ψ(p, P ) , (5.7)

˜̄ψ(−p, P ) = ∫
d4k
(2π)4

ψ̄(−k, P )K(p, k, P ) . (5.8)

After shifting the integration momentum by p + η̂Q → p
in the second terms of eqs. (5.5) and (5.6), one obtains

〈P ′, s′|∂µJµq (0)|P, s〉 = qq

∫
d4p
(2π)4

d4k
(2π)4

×{
ū(P ′, s′) ψ̄(−p, P ′)K(p, k + η̂Q, P ′)ψ(k, P )u(P, s)

− ū(P ′, s′) ψ̄(−p, P ′)K(p− η̂Q, k, P )ψ(k, P )u(P, s)
}
, (5.9)

〈P ′, s′|∂µJµD(0)|P, s〉 = qD

∫
d4p
(2π)4

d4k
(2π)4

×{
ū(P ′, s′) ψ̄(−p, P ′)K(p, k − ηQ, P ′)ψ(k, P )u(P, s)

− ū(P ′, s′)ψ̄(−p, P ′)K(p+ηQ, k, P )ψ(k, P )u(P, s)
}
. (5.10)

Examination of the terms in eqs. (5.9) and (5.10) reveals
that their sum gives rise to a conserved current only if
K(p, k, P ) ≡ K(p−k). That is, if the nucleon BS kernel is
independent of the total nucleon bound state momentum
P and, in addition, it only depends on the difference of
the relative momenta p− k. These criteria are satisfied in
studies of meson bound states within the ladder approxi-
mation, see for example ref. [34]. However, we observe that
even in the absence of an explicit dependence on the total

nucleon momentum P , the exchange kernel of the BSE, as
obtained from the nucleon Faddeev equation, necessarily
depends on the sum of the relative momenta p+k and not
on their difference. It follows that even with approximat-
ing the exchange kernel by a P -independent one, which
corresponds to neglecting diquark substructure together
with using η = 1/2 as in refs. [36,37], the electromagnetic
current of the nucleon is not conserved in the impulse
approximation and it is already necessary to include an
additional coupling of the photon to the quark-exchange
kernel.

It is interesting to note that similar photon-kernel cou-
plings are required in other systems as well. For example,
while the nucleon-nucleon scattering kernels due to meson
exchanges depend only on the difference of the relative
momenta (i.e. K ≡ K(p − k)), the isospin dependence
of a charged meson that is exchanged between the two
nucleons requires one to introduce additional photon cou-
plings to the exchanged meson to maintain current conser-
vation, in this case the charged pion. Such contributions
play an important role in determining the electromagnetic
form factors of the deuteron [46]. For the importance of
meson-exchange currents in few-nucleon systems, see also
the recent review, ref. [47].

The coupling of the exchange quark (with electromag-
netic charge qX) in the kernel of eq. (3.5) gives rise to the
additional contribution JX to the nucleon current:

JµX(p, P
′; k, P ) = − qX 1

2
×

χ̃(p1, η̂P − k)ST (q)Γµ
q
T (q′, q)ST (q′) ˜̄χT (p′2, η̂P ′ − p),

(5.11)

with q = η̂P − ηP ′ − p− k , q′ = q +Q ,

p1 = σ(ηP ′ + p)− σ̂q , p′2 = −σ′(ηP + k) + σ̂′q′ ,

and σ + σ̂ = σ′ + σ̂′ = 1.

From the Ward-Takahashi identity for the quark-
photon vertex in eq. (5.3), one finds that the divergence
of the exchanged-quark contribution to the nucleon elec-
tromagnetic current is

QµJ
µ
X(p, P

′; k, P ) =

−iqX 1
2

(
χ̃(p1, η̂P − k)ST (q) ˜̄χT (p′2, η̂P ′ − p)

− χ̃(p1, η̂P − k)ST (q′) ˜̄χT (p′2, η̂P ′ − p)
)
. (5.12)

To provide a comparison with the quark and diquark elec-
tromagnetic currents given above for the quark-exchange
kernel of eq. (3.5) written using the same momentum con-
ventions as used in eq. (5.11), we rewrite the divergences
of the Mandelstam currents given in eqs. (5.9) and (5.10)
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as

QµJ
µ
q (p, P

′; k, P ) =

−iqq 1
2

(
χ̃(p1, η̂P − k)ST (q) ˜̄χT (p′2 −Q, η̂P ′ − p)

− χ̃(p1 −Q, η̂P − k)ST (q′) ˜̄χT (p′2, η̂P ′ − p)
)
, (5.13)

QµJ
µ
D(p, P

′; k, P ) =

−iqD 1
2

(
χ̃(p1 − σ̂Q, η̂P − k +Q)ST (q′) ˜̄χT (p′2, η̂P ′ − p)

− χ̃(p1, η̂P − k)ST (q) ˜̄χT (p′2 − σ̂′Q, η̂P ′ − p−Q)
)
. (5.14)

Since qq − qD + qX = 0, one thus finds that, in the
case of a pointlike diquark BS amplitude (i.e. neglecting
any momentum dependence in the diquark BS amplitudes
χ̃ and ˜̄χ), the sum of the three currents given above now
yields a conserved electromagnetic current for the nucleon;
that is,

Qµ

(
Jµq + JµD + JµX

)
= 0 . (5.15)

For this cancellation all three contributions are crucial. In
particular, the contributions from the photon coupling to
the exchanged quark JµX , as well as the impulse approx-
imate contributions Jµq + JµD must all be included. For
the quark-diquark model of baryons, these three contribu-
tions to the current correspond to those given in ref. [48]
for the general structure of the one-particle contributions
to the current of a 3-particle Faddeev bound state (when
the interactions are due to a separable 2-particle scatter-
ing kernel).4 In the NJL model the one-particle contribu-
tions yield the complete current of the 3-particle bound
state [20].

However, if the substructure of the diquark BS am-
plitudes is taken into account and the diquark BS am-
plitude is dependent on any momentum, the cancella-
tion of the longitudinal pieces in the one-particle con-
tributions, eqs. (5.12) to (5.14), is destroyed. Additional
photon couplings which are not of the one-particle type
become necessary. The violations to current conservation
from the one-particle contributions can be displayed in the
present framework in a way which will become useful in
the following sections. Rearranging the six terms from the
eqs. (5.12), (5.13) and (5.14) in such a way as to factor
out two terms,

S1(p, P ′; k, P ) := −iqq χ̃(p1 −Q, η̂P − k) +
iqD χ̃(p1 − σ̂Q, η̂P − k +Q) − iqX χ̃(p1, η̂P − k), (5.16)
S2(p, P ′; k, P ) := −iqq ˜̄χ(p′2 −Q, η̂P ′ − p) +
iqD ˜̄χ(p′2 − σ̂′Q, η̂P ′ − p−Q)−iqX ˜̄χ(p′2, η̂P ′ − p), (5.17)
4 Here, one-particle refers to a contribution that arises from a

one-particle irreducible 3-point vertex for the photon coupling.

one obtains

Qµ

(
Jµq + JµD + JµX

)
=

−1
2

(
S1(p, P ′; k, P )ST (q′) ˜̄χT (p′2, η̂P ′ − p)

− χ̃(p1, η̂P − k)ST (q)ST2 (p, P ′; k, P )
)
. (5.18)

It will be demonstrated in the subsection below that
these contributions are exactly canceled by the so-called
“seagull” contributions which arise from one-particle ir-
reducible 4-point couplings of the two quarks, the di-
quark and photon. Such terms must be included when-
ever the substructure of a diquark bound state (in the
form of a momentum-dependent diquark BS amplitude)
is included in the description of the nucleon. Analogous
seagull contributions were previously found necessary in γ-
meson-baryon-baryon couplings to satisfy the correspond-
ing Ward-Takahashi identities [44,45].

Note that terms analogous to the explicit one-particle
contributions to the bound state currents presented in
this section can also be obtained by employing a “gen-
eralized” impulse approximation for the 3-particle Fad-
deev amplitudes. This procedure was recently adopted in
an exploratory study of the electromagnetic nucleon form
factors [49]. In this study five distinct (one-particle) con-
tributions to the form factors arose which were calculated
using parameterizations of a simplified nucleon Faddeev
amplitude. From the separable-kernel Faddeev equation
one readily verifies, however, that only three of these five
contributions are independent. These three have the ex-
act same topology as the one-particle contributions pre-
sented above. Starting from the generalized impulse ap-
proximation, the relative weights of these contributions
differ, however, from those needed for current conserva-
tion. The latter can be systematically derived from a gaug-
ing technique [50]. The discrepancy in the weights is due
to an overcounting of the (generalized) impulse approxi-
mation which can therefore not lead to a conserved cur-
rent [51]. This problem is independent of the necessity for
the additional seagull contributions which persists when
non-pointlike diquarks are used. We will now address these
contributions.

5.1 Ward identities and seagulls

TheWard-Takahashi identity for the quark-photon vertex,
eq. (5.3), follows from the equal-time commutation rela-
tion for the electromagnetic quark-current operator jµ(x)
with the quark field (with charge qq),

[j0(x), q(y)] δ(x0 − y0) = −qq q(x) δ4(x− y) ,
[j0(x), q̄(y)] δ(x0 − y0) = qq q̄(x) δ4(x− y) . (5.19)

Formal problems with equal-time commutation relations
for interacting fields can be avoided by replacing the
canonical formalism with a Lagrangian formulation based



M. Oettel et al.: Current conservation in the covariant quark-diquark model of the nucleon 265

on relativistic causality rather than to single out a sharp
timelike surface [52]. However, as an operational device
for the derivation of Ward identities, the equal-time com-
mutation relations of eqs. (5.19) will nevertheless give the
correct result.

Consider the 5-point Green function that describes the
photon coupling to four quarks Gµ

αγ,βδ. Using the notation
that qqα, qqβ , qqγ , and qqδ denote the charges of the quark
fields with Dirac indices denoted by α, β, γ and δ, respec-
tively, the Ward identity is given by

∂zµ 〈T
(
qγ(x3)qα(x1)q̄β(x2)q̄δ(x4) jµ(z)

)〉 =
−(
qqα δ

4(x1 − z) + qqγ δ
4(x3 − z)− qqβδ

4(x2 − z)
− qqδδ4(x4 − z)

) 〈T (
qγ(x3)qα(x1)q̄β(x2)q̄δ(x4)

)〉. (5.20)
The 4-point function on the right-hand side has the di-
quark pole contribution given in eq. (2.2) and depicted in
fig. 1. The Fourier transformation of the left-hand side of
eq. (5.20) allows one to define

Gµ
αγ,βδ(p, P

′; k, P ) :=∫
d4x1 d4x2 d4x3 d4x4 eipαx1 eipβx2 eipγx3 eipδx4 ×

〈T (
qγ(x3)qα(x1)q̄β(x2)q̄δ(x4) jµ(0)

)〉 . (5.21)

Here, p = σpγ − σ̂pα, k = σ′pβ − σ̂′pδ and P ′ = P +
Q as before. It is straightforward to verify the following
Ward identity for this 5-point Green function from the
pole contribution to the 4-quark Green function, given
in eq. (2.2), which determines the dominant contribution
when the diquark momenta are close to the diquark pole
at P 2 = P ′2 = m2

s

iQµG
µ
αγ,βδ(p, P

′; k, P ) :=

qqα
i

P 2 −m2
s + iε

χγα(p+ σ̂Q, P ) χ̄βδ(k, P )

+ qqγ
i

P 2 −m2
s + iε

χγα(p− σQ,P ) χ̄βδ(k, P )

− qqβ i

P ′2 −m2
s + iε

χγα(p, P ′) χ̄βδ(k − σ′Q,P ′)

− qqδ i

P ′2 −m2
s + iε

χγα(p, P ′) χ̄βδ(k+σ̂′Q,P ′). (5.22)

To explicitly demonstrate that this does indeed give the
additional contributions necessary to current conservation
of the BSE solution for the nucleon, one needs to con-
sider the irreducible 4-point coupling of the photon to the
quarks and the diquark derived from the following defini-
tion:(
S(pγ)Mµ(pγ , pα, Pd)ST (pα)

)
γα
D(Pd) :=

Z−1

∫
d4k
(2π)4

Gµ
αγ,βδ(p, Pd +Q; k, Pd) χ̃δβ(k, Pd), (5.23)

with pα = −p+ σ(Pd +Q), pγ = p+ σ̂(Pd +Q), and

Z :=
∫

d4k
(2π)4

tr
[
χ̄(k, Pd) χ̃(k, Pd)

]
. (5.24)

The Ward identity for the 5-point Green function then
entails

iQµM
µ(pγ , pα, Pd) =

qqα χ̃(p+ σ̂Q, Pd)ST (pα −Q)S−1T (pα)

+ qqβ S−1(pγ)S(pγ −Q) χ̃(p− σQ,Pd)

−∆Φ(Q2) χ̃(p, Pd +Q)
P 2
d −m2

s

(Pd +Q)2 −m2
s + iε

, (5.25)

with

Q = pγ + pα − Pd , p = σpγ − σ̂pα ,
(σ + σ̂ = 1) and ∆Φ(Q2) is defined by

∆Φ(Q2) := Z−1

∫
d4k
(2π)4

×{
qqβ tr

[
ST (−k + σ̂′Pd +Q)×˜̄χ(k − σ′Q,Pd +Q)S(k + σ′Pd) χ̃(k, Pd) ]

+ qqδ tr
[
ST (−k + σ̂′Pd)×˜̄χ(k + σ̂′Q,Pd +Q)S(k + σ′Pd +Q)χ̃(k, Pd)]}. (5.26)

In the limit Q → 0, this is normalized in such a way as
to yield the charge of the scalar diquark; that is, ∆Φ(0) =
qqβ + qqδ ≡ qΦ.

In a more detailed and complete calculation, the cou-
pling of the diquark to the photon would itself have to
be done within a Mandelstam formalism. To achieve this,
the Ward identity of eq. (5.3) would be used in the Man-
delstam formalism to construct the Ward identity for the
quark substructure of the diquark, thereby replacing the
naive Ward identity of eq. (5.4) with a more accurate
identity which accurately depicts the quark substructure
of the diquark. This added complication can be worked
out in a straightforward manner by introducing a few
additional technical details. However, the basic princi-
ple of such couplings, as derived from Ward identities,
can be seen from the following simplifying assumption,
which will be used in the following sections. Assume that
∆Φ(Q2) is independent of the photon momentum, such
that ∆Φ(Q2) = ∆Φ(0) = qΦ. This assumption is suffi-
cient in order to obtain the correct charges for the nucleon
bound state. From this starting point, the electromagnetic
diquark form factor can be easily included in a minor ex-
tension of the framework and follows simply from the in-
clusion of a dependence on the photon momentum Q2 of
∆Φ(Q2).

By including the effect of only the charge of the di-
quark, that is setting ∆Φ(Q2) ≡ qΦ for all photon mo-
menta Q, the divergence of the amplitude Mµ is written
as

QµM
µ(pα, pβ , Pd) =

QµM legs
µ (pα, pβ , Pd) + QµM sg

µ (pα, pβ , Pd), (5.27)

where M legs contains the couplings of the photon to the
amputated quark and diquark legs according to their re-
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spective Ward identities,

iQµM legs
µ (pα, pβ , Pd) =

qqα
(
S−1(pα)− S−1(pα −Q)) ×

S(pα −Q)χ̃(p− σ̂Q, Pd)
+ qqβχ̃(p+ σQ,Pd)ST (pβ −Q)×(
S−1T (pβ)− S−1T (pβ −Q))
− qΦχ̃(p, Pd +Q)D(Pd +Q)(
D−1(Pd)−D−1(Pd +Q)

)
, (5.28)

while the term M sg describes the one-particle irreducible
seagull couplings and its divergence is given by

iQµM sg
µ (pα, pβ , Pd) =

qqα χ̃(p− σ̂Q, Pd) + qqβ χ̃(p+ σQ,Pd)
− qΦχ̃(p, Pd +Q). (5.29)

These seagull couplings are exactly what is needed to
arrive at a conserved electromagnetic current for the nu-
cleon. Upon substitution of the charges of the spectator
and exchanged quark and the scalar diquark, qqα = qq,
qqβ = qX and qΦ = qD, respectively, one finds

S1(p, P ′; k, P ) = QµM sg
µ (ηP ′ + p, q +Q, ηP − k), (5.30)

with Q = P ′ − P . A solution to this Ward identity, with
transverse terms added so as to keep the limit Q → 0
regular, which follows from a standard construction, cf.
refs. [44,45], is provided by

iM sg
µ (pα, pβ , Pd) =

qq
(2pα −Q)µ

p2α − (pα −Q)2
(
χ̃(pα −Q, pβ , Pd)− χ̃(pα, pβ , Pd)

)
+qX

(2pβ −Q)µ
p2β − (pβ −Q)2

(
χ̃(pα, pβ −Q,Pd)− χ̃(pα, pβ , Pd)

)
−qD (2Pd +Q)µ

(Pd +Q)2 − P 2
d

(
χ̃(pα, pβ , Pd +Q)− χ̃(pα, pβ , Pd)

)
(5.31)

with Q = pα+pβ−Pd. Analogously, for the other seagull,
one finds

iM̄ sg
µ (pα, pβ , Pd) =

qq
(2pα −Q)µ

p2α − (pα −Q)2
(˜̄χ(pα −Q, pβ , Pd)− ˜̄χ(pα, pβ , Pd))

+qX
(2pβ −Q)µ

p2β − (pβ −Q)2
(˜̄χ(pα, pβ −Q,Pd)− ˜̄χ(pα, pβ , Pd))

−qD (2Pd −Q)µ
P 2
d − (Pd −Q)2

(˜̄χ(pα, pβ , Pd −Q)− ˜̄χ(pα, pβ , Pd)).
(5.32)

The amplitudes χ̃(pα, pβ , Pd) herein need to be con-
structed from the BS amplitude of the scalar diquark
by removing the overall momentum conserving constraint

pα + pβ = Pd. With these seagull couplings, a conserved
electromagnetic current operator is obtained by including
the seagull contribution

J sgµ (p, P ′; k, P ) =

1
2

(
M sg

µ (ηP ′ + p, q′, η̂P − k)ST (q′) ˜̄χT (p2, η̂P ′ − p)

− χ̃(p1, η̂P − k)ST (q) M̄ sg T
µ (−(ηP + k),−q, η̂P ′ − p)

)
.

(5.33)

The total conserved electromagnetic current of the nu-
cleon is therefore given by Jµem := Jµq + JµD + JµX + Jµsg.

Note that this explicit construction of the conserved
current complies with the general gauging formalism pre-
sented in ref. [48]. In the reduction of Faddeev equations
with separable 2-particle interactions, the seagull cou-
plings arise from 2-particle contributions to the bound
state current. These contributions describe the irreducible
coupling of the photon to the 2-particle scattering kernel.

Technically, the additional contributions to the elec-
tromagnetic nucleon current arising from exchanged quark
in the nucleon BSE kernel JµX, as well as the seagull term
Jµsg, involve two 4-dimensional loop integrations to calcu-
late the electromagnetic form factors from the nucleon BS
amplitudes. As demonstrated above, this considerable ex-
tension to the Mandelstam formalism (involving only sin-
gle loop integrations) is absolutely necessary to correctly
include the non-trivial substructure of the diquark corre-
lations and maintain current conservation of the nucleon.

While seagull contributions are not necessary in an
approximation that employs pointlike diquarks, as is the
case in ref. [36], beyond-impulse contributions, such as
the coupling of the exchanged-quark to the photon are
necessary! In the study of ref. [36], it was observed that
neglecting this contribution produced negligible violations
to the charges of proton and neutron and so it was dis-
missed as unimportant. However, in the case of the present
study this contribution is significant. The reason for this
is the larger value of the coupling strength gs (obtained
from the diquark normalization condition gs = 1/N2

s )
used herein. For a pointlike diquark, the coupling need
not be as large. Furthermore, in contrast to the impulse-
approximate Mandelstam currents, which are independent
of gs, the contribution to the electromagnetic current due
to the exchanged quark is proportional to g2s (see eq.
(5.11)). Hence, use of a smaller coupling strength g2s in
the BSE reduces the importance of going beyond the im-
pulse approximation.

As an example of the importance of the contributions
beyond the impulse terms of Jq and JD, we consider the
results for the proton and neutron electromagnetic charges
using the amplitudes plotted in fig. 3 from the Mandelstam
current Jµq + JµD alone. This leads to charges QP = 0.85
for the proton and QN = 0.15 for the neutron. A theo-
rem constrains the charges of the proton and neutrons to
obey QP +QN = 1. The theorem relies on using η = 1/3
and is derived from the nucleon normalization condition
in eq. (4.4). However, the way it is realized here is not
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very satisfying. In sect. 6, we discuss in detail the rele-
vance of the various contributions to the electromagnetic
form factors of the proton and neutron due to exchanged-
quark-photon coupling and seagull couplings.

Having proven that the present framework conserves
the electromagnetic current, one might think that the re-
sults for the proton and neutron charges, QP = 1 and
QN = 0, must follow trivially. However, the verification
that this framework provides the correct charges for the
proton and neutron is not entirely trivial as is demon-
strated in the next section.

For finite momentum transfer Q = P ′ − P > 0, the
complete Mandelstam couplings for the diquark will still
require modifications. If the photon is coupled to the el-
ementary carriers of charge only, that is, to the quarks
within the diquark (with quark charges qqα, qqβ), the
photon-diquark vertex will itself be of the form

Fµ
Φ (Q) =

Z−1 qqα

∫
d4k
(2π)4

tr
[
ST (−k + σ̂Pd +Q)×

˜̄χ(k − σQ,Pd +Q)S(k + σPd) χ̃(k, Pd)×
ST (−k + σ̂Pd)ΓµT (−k + σ̂Pd +Q,−k + σ̂Pd)

]
+Z−1 qqβ

∫
d4k
(2π)4

tr
[
ST (−k + σ̂Pd)×

˜̄χ(k + σ̂′Q,Pd +Q)S(k + σPd +Q)×
Γµ(k + σPd +Q, k + σPd)S(k + σPd) χ̃(k, Pd)

]
.

(5.34)

This gives the correct diquark charge in the limit the pho-
ton momentum Q→ 0. In this limit, as far as the electric
form factors of the nucleons are concerned this detail is
irrelevant since they are constrained to be proportional to
the charge of the nucleon. On the other hand, the anoma-
lous magnetic moments of the nucleons may receive ad-
ditional contributions from the quark substructure of the
diquark.

6 Electromagnetic form factors of the nucleon

The matrix elements of the nucleon current can be para-
metrised as

〈P ′, s′|Jµem(0)|P, s〉 =
ū(P ′, s′)

[
γµF1 +

iκF2

2M
σµνQν

]
u(P, σ) . (6.1)

Here, F1 and F2 are the Dirac charge and the Pauli
anomalous magnetic form factors, respectively [53]. Qµ =
P ′ − P is the spacelike momentum of the virtual photon
probing the nucleon (−Q2 ≥ 0). Using the Gordon decom-

position

ū(P ′, s′)
iσµνQν

2M
u(P, s) =

ū(P ′, s′)
[
γµ − Pµ

BF

M

]
u(P, s) , (6.2)

with the definition of the Breit momentum PBF := (P ′ +
P )/2, the current can be rewritten as

〈P ′, s′|Jµem(0)|P, s〉 =
ū(P ′, s′)

[
γµ (F1 + κF2) − Pµ

BF

M
κF2

]
u(P, s) . (6.3)

It is convenient in the following to introduce (matrix val-
ued) matrix elements by initial and final spin-summations,

〈P ′|Ĵµ|P 〉 := 〈P ′, s′|Jµ|P, s〉
∑
s,s′
u(P ′, s′)ū(P, s) , (6.4)

to remove the nucleon spinors. The frequently used Sachs
electric and magnetic form factors GE and GM are intro-
duced via

GE = F1 +
Q2

4M2
κF2 , (6.5)

GM = F1 + κF2 . (6.6)

These can be extracted from eq. (6.4),

〈P ′|Ĵµem(0)|P 〉 =
Λ+(P ′)

[
γµGM + M

Pµ
BF

P 2
BF

(GE −GM)
]
Λ+(P ) , (6.7)

by taking traces of 〈Ĵµem〉 ≡ 〈P ′|Ĵµem(0)|P 〉 as follows:

GE =
M

2P 2
BF

tr 〈Ĵ em
µ 〉Pµ

BF , (6.8)

GM =
M2

Q2

(
tr 〈Ĵ em

µ 〉γµ − M

P 2
BF

tr 〈Ĵ em
µ 〉Pµ

BF

)
. (6.9)

We calculate the current matrix elements using Mandel-
stam’s approach with the current operators defined in the
previous sections, such that

〈P ′|Ĵµem(0)|P 〉 =∫
d4p
(2π)4

d4k
(2π)4

ψ̄(−p, P ′)Jµem(p, P
′; k, P )ψ(k, P ). (6.10)

The current operator Jµem consists of the four parts which
describe the coupling of the photon to quark or diquark, to
the exchanged-quark and the seagull contributions which
arise from the coupling of the photon to the diquark BS
amplitudes. These are determined by the following kernels,

Jµq = qq Γµ
q (pq, kq) D

−1(ks) (2π)4δ4(p− k − η̂Q),(6.11)
JµD = qD Γ

µ
D(ps, ks) S

−1(kq) (2π)4δ4(p− k + ηQ), (6.12)
JµX = −qX 1

2
× (6.13)

χ̃(p1, ks)ST (q)Γµ
q
T (q′, q)ST (q′) ˜̄χT (p′2, ps),

Jµsg =
1
2

(
Mµ

sg(pq, q
′, ks)ST (q′) ˜̄χT (p′2, ps)

− χ̃(p1, ks)ST (q) M̄µT
sg (−kq,−q, ps)

)
. (6.14)
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Fig. 8. Impulse approximation diagrams.

The abbreviations for the various momenta are summa-
rized in the following table:

Table 3.
incoming outgoing

quark: kq=ηP+k pq=ηP ′+p

diquark: ks=η̂P−k ps=η̂P ′−p

exchange quark: q=η̂P−ηP ′−p−k q′=η̂P ′−ηP−p−k

relative momenta (σ=σ′=1/2)
within diquark: p1= 1

2 (pq−q) p′
2= 1

2 (−kq+q′)

seagull quark-pair: p′
1= 1

2 (pq−q′) p2= 1
2 (−kq+q)

The contributions to the form factors in the impulse
approximation are depicted in fig. 8, while the exchange-
quark and seagull contributions are shown in fig. 9.

We use σ = σ′ = 1/2 in the diquark amplitudes. As
discussed in sect. 2, this implies that the relative momenta
pi within the diquarks are exchange symmetric and that
our parameterisations of the diquark BS amplitudes are
independent of the mass of the diquark. We thus set

χ̃(p1, ks) → χ̃(p21) =
γ5C

Ns
P (−p21) , (6.15)

˜̄χ(p′2, ps) → ˜̄χ(p′22) = γ5C
−1

Ns
P (−p′22) . (6.16)

This also simplifies the seagull terms, as the seagull cou-
plings to the diquark legs do not contribute to the seagulls
in this case. The amplitudes in the brackets of the last lines
of eqs. (5.31) and (5.32) cancel.

The construction of such vertex functions from the
Ward-Takahashi identities is not unique. In particular, the
forms for the irreducible seagull couplings Mµ

sq and M̄µ
sq

given in eqs. (5.31) and (5.32), respectively, are designed
for amplitudes χ̃ and ˜̄χ which are functions of the scalars
p2α, p

2
β and, in general, P 2

d . For Q→ 0, the possibility that
the denominators in each of the three terms may vanish
entails that the prefactors that arise from expanding the
amplitudes in brackets must also vanish:

χ̃((pα −Q)2, p2β)− χ̃(p2α, p2β) →
−2(pαQ)

∂

∂p2α
χ̃(p2α, p

2
β). (6.17)
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q′=(η̂−η)PBF−p−k+Q/2,
p1=(η+1)Q/4−(1−3η)PBF/2+p+k/2,
p′
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p2=(η−1)Q/4+(1−3η)PBF/2−p/2−k,
p′
2=(η+1)Q/4+(1−3η)PBF/2−p/2−k.

Fig. 9. Exchange quark and seagull diagrams.

Our present assumption on the dominant momentum de-
pendence of these amplitudes is slightly different though.
For amplitudes χ̃ ≡ χ̃((pα−pβ)2/4), see (6.15), (6.16), the
prefactors of the seagulls in the form given in eqs. (5.31)
and (5.32), corresponding to factors ∝ 1/(pαQ) and ∝
1/(pβQ), respectively, are not canceled in an analogous
way. To cure this, we replace the quark momenta pα and
pβ in these prefactors by (plus/minus) the relative mo-
mentum, ±(pα − pβ)/2. This yields

iMµ
sg = qq

(4p′1 −Q)µ
4p′1Q−Q2

(
χ̃((p′1 −Q/2)2)− χ̃(p′12)

)
+qX

(4p′1 +Q)
µ

4p′1Q+Q2

(
χ̃((p′1+Q/2)

2)−χ̃(p′12)
)
, (6.18)

iM̄µ
sg = qq

(4p2 −Q)µ
4p2Q−Q2

(˜̄χ((p2 −Q/2)2)− ˜̄χ(p22))
+qX

(4p2 +Q)µ

4p2Q+Q2

(˜̄χ((p2+Q/2)2)− ˜̄χ(p22)). (6.19)
Since Ward-Takahashi identities do not completely con-
strain the form of the vertices, such modification of this
type is within the freedom allowed by this ambiguity. The
forms (6.18, 6.19) solve the corresponding Ward identities
at finite Q, see eq. (5.29) (with qq+qX = qD). In addition,
the smoothness of the limit Q → 0 for the given model
assumptions is ensured. In this limit,

iMµ
sg → − (qq − qX) pµ1 χ̃′(p21) ,

iM̄µ
sg → − (qq − qX) pµ2 ˜̄χ′(p22) . (6.20)

We emphasize that this limit is unambiguous. It must co-
incide with the form required by the differential form of
the Ward identity for the seagull couplings. As such it re-
stricts contributions that are both longitudinal and trans-
verse to the photon four-momentum Qµ. The form above
follows necessarily for the model diquark amplitudes em-
ployed in the present study, and this form provides the cru-
cial condition on the seagull couplings that ensure charge
conservation for the nucleon bound state.
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The nucleon charges are obtained by calculating

GE(0) =
1

2M

∫
d4p
(2π)4

d4k
(2π)4

×

tr
[
ψ̄(−p, P )PµJµem(p, P ; k, P )ψ(k, P )

]
. (6.21)

The various contributions to the electromagnetic current
for Q→ 0 (i.e., P ′ = P ) are given by

Jµq → iqq

(
∂

∂kµq
S−1(kq)

)
D−1(ks) (2π)4δ4(p− k),(6.22)

JµD → iqD

(
∂

∂kµs
D−1(ks)

)
S−1(kq) (2π)4δ4(p−k), (6.23)

JµX → − iqX 1
2N2

s

P (−p21)P (−p22)
(
∂

∂qµ
S(q)

)
, (6.24)

Jµsg → i(qq − qX) 1
2N2

s

S(q)×(
p1µP

′(−p21)P (−p22)−p2µP (−p21)P ′(−p22)
)
. (6.25)

Comparing this to the normalization integrals given in
sect. 4, one finds

GE(0) = qqNq + qDND + qXNX − (qq − qX)NP. (6.26)

Using qq = 2/3, qD = 1/3, qX = −1/3 for the proton, and
qq = −1/3, qD = 1/3, qX = 2/3 for the neutron, together
with eq. (4.4), one therefore has

1 = ηNq + (1− η)ND + (1− 2η)NX + (1− 3η)NP ,

QP =
2
3
Nq +

1
3
ND − 1

3
NX −NP ,

QN = −1
3
Nq +

1
3
ND +

2
3
NX +NP. (6.27)

However, these three equations are not independent.
Rewriting the normalization condition for the nucleon BS
amplitudes, we find that

1 =
2
3
Nq +

1
3
ND − 1

3
NX −NP

+(η − 2
3
)
(
Nq −ND − 2NX − 3NP

)
, (6.28)

which entails that

1 = QP + (2− 3η)QN . (6.29)

To verify that we do in fact obtain the correct charges of
the proton and neutron, it suffices to show that Nq−ND =
2NX+3NP; that is, it suffices to show that the neutron is
neutral, QN = 0. The proof of this is straightforward and
is given in appendix C.

6.1 Numerical computation

The numerical computation of the form factors is done in
the Breit frame, where

Qµ = (0,Q) ,
Pµ = (ωQ,−Q/2) , (6.30)
P ′µ = (ωQ,Q/2) ,
Pµ

BF = (ωQ, 0) ,

with ωQ =
√
M2 + Q2/4.

The transformation of these variables into 4-
dimensional Euclidean polar coordinates follows the same
prescriptions as those employed in sect. 3 (see eqs. (3.19)),
namely

{p2, k2, Q2} → {−p2, −k2, −Q2} , P 2
BF → ω2Q ,

pQ → − p |Q| yQ , kQ → − k |Q| zQ ,
pPBF → iωQ p yBF , kPBF → iωQ k zBF ,

pP ′ = pPBF + pQ/2 →
iωQ p yBF − p |Q| yQ/2 =: iM p y ,

kP = kPBF − kQ/2 →
iωQ k zBF + k |Q| zQ/2 =: iM k z. (6.31)

In the presence of two independent external momenta, Q
and PBF, we are left with 5 independent angular variables.
Together with the absolute values of the integration mo-
menta p and k the exchange-quark and seagull contribu-
tions to the form factors at finite momentum transfer Q
require performing 7-dimensional integrations. These are
computed numerically using Monte Carlo integrations.

For the impulse approximation diagrams, the num-
ber of necessary integrations collapses to three due to the
momentum-conserving delta functions in eqs. (6.11) and
(6.12). One of the integrations is over the absolute value
of the loop momentum k and two are the angular integra-
tions over zBF and zQ, the cosines of the angles between k
and PBF and k and Q, respectively.

The BS amplitudes for the nucleon bound states are
given in terms of the two scalar functions S1(p, P ) and
S2(p, P ), cf. eqs. (3.16) and (3.17) in sect. 3, which, we
recall eqs. (3.20) and (3.21), are expanded in terms of
Chebyshev polynomials Tn to account for their depen-
dence on the azimuthal Euclidean variable,

S(p, y) �
N−1∑
n=0

(−i)n Sn(p)Tn(y) . (6.32)

While the argument y of the Chebyshev polynomials, the
cosine between relative and total momentum, is in [−1, 1]
in the rest frame of the nucleon, this cannot be simultane-
ously true for the corresponding arguments in the initial
and final nucleon bound state amplitudes at finite (space-
like) momentum transfer Q. In the Breit frame, these ar-
guments are

z =
ωQ
M
zBF − i

1
2
|Q|
M
zQ and

y =
ωQ
M
yBF + i

1
2
|Q|
M
yQ , (6.33)

for the initial and final nucleon BS amplitudes, respec-
tively (with the angular variables zQ, yQ and zBF, yBF all
in [−1, 1]). In order to use the nucleon amplitudes com-
puted from the BSE in the rest frame, analytical contin-
uation into a complex domain is necessary. This can be
justified for the bound state BS wave functions ψ (with
legs attached). These can be expressed as vacuum expecta-
tion values of local and almost local operators and we can
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resort to the domain of holomorphy of such expectation
values to continue the relative momenta of the bound state
BS wave function ψ(p, P ) into the 4-dimensional complex
Euclidean space necessary for the computation of Breit-
frame matrix elements from rest frame nucleon wave func-
tions. The necessary analyticity properties are manifest
in the expansion in terms of Chebyshev polynomials with
complex arguments.

There are, in general however, singularities associated
with the constituent propagators attached to the legs of
the bound state amplitudes, here given by the free particle
poles on the constituent mass shells. For sufficiently small
Q2 these are outside the complex integration domain. For
larger Q2, these singularities enter the integration domain.
As the general analyticity arguments apply to wave func-
tions ψ rather than the truncated BS amplitudes ψ̃ with 2-
component structure R(p, y), it is advantageous to expand
these untruncated BS wave functions directly in terms of
Chebyshev polynomials (introducing moments Rn(p)),

R(p, y) �
N−1∑
n=0

(−i)nRn(p)Tn(y) , (6.34)

and employ the analyticity of Chebyshev polynomials for
the BS wave function R. This can be written in terms of
the two Lorentz-invariant functions R1 and R2 by

ψ(p, P ) = D(ps)S(pq)ψ̃(p, P ) =

D(ps)S(pq)
(
S1(p, P )Λ+(P ) + S2(p, P )Ξ(p, P )Λ+(P )

)
=: R1(p, P )Λ+(P ) + R2(p, P )Ξ(p, P )Λ+(P ).

(6.35)

The price one must pay, however, is a considerably slower
suppression of the higher Chebyshev moments in the ex-
pansions in eq. (6.34) for the BS wave functions compared
to the much faster suppression observed for the truncated
amplitudes ψ̃. For example, the fourth moments of the
truncated nucleon amplitudes ψ̃ are shown in fig. 3 of
sect. 3. Their magnitudes are less than 2 orders of magni-
tude smaller than the leading Chebyshev moments. One
must include up to 8 Chebyshev moments in the expan-
sion for the untruncated BS wave functions in order to
achieve a comparable reduction.

If the truncated BS amplitudes ψ̃ are used in the ex-
pansion, one must account for the singularities of the
quark and diquark legs explicitly when these enter the
integration domain for some finite values of Q2. A naive
transformation to the Euclidean metric, such as the one
given by eqs. (6.31), is insufficient. Rather the proper
treatment of these singularities is required when they
come into the integration domain.

For the impulse-approximate contributions to the form
factors we are able to take the corresponding residues
into account explicitly in the integration. Although this
is somewhat involved, it is described in appendix D. For
these contributions, one can compare both procedures and
verify numerically that they yield the same, unique results.
This is demonstrated in appendix D.

We have to resort to the BS wave function expansion
for calculating the exchange quark and seagull diagrams,
however. The residue structure entailed by the structure
singularities in the constituent quark and diquark propa-
gators is too complicated in these cases (involving the 7-
dimensional integrations). The weaker suppression of the
higher Chebyshev moments and the numerical demands
of the multidimensional integrals thus lead to limitations
on the accuracy of these contributions at large Q2 by the
available computer resources.

The Dirac algebra necessary to compute GE and GM,
according to eqs. (6.8) and (6.9), can be implemented di-
rectly into our numerical routines. We use the moments
Sn(p) or Rn(p) obtained from the nucleon BSE as de-
scribed in sect. 3, which are real scalar functions with
positive arguments. These functions are computed on a
one-dimensional grid of varying momenta with typically
np = 80 points. Then spline interpolations are used to ob-
tain the values of these functions at intermediate values.
The scalar functions S(p, P ) and R(p, P ) are then eas-
ily reconstructed from eqs. (6.32) and (6.34), respectively.
Then complex arguments, as given in eqs. (6.33), appear
in the Chebyshev polynomials when the electromagnetic
form factors are calculated.

In the results shown below, the 3-dimensional in-
tegrations of the impulse approximation diagrams are
performed using Gauss-Legendre or Gauss-Chebyshev
quadratures, while the 7-dimensional integrations neces-
sary for the calculation of the exchange-quark and seag-
ull contributions are carried out by means of stochastic
Monte Carlo integrations with 1.5×107 grid points. We
find that beyond Q2 = 3 GeV2, numerical errors for the
stochastic integrations become larger than 1% of the nu-
merical result. This we attribute to the continuation of
the Chebyshev polynomials Tn(z) to complex values of z
as described above.

In addition to the aforementioned complications, there
is another bound on the value of Q2 above which the ex-
change and seagull diagrams cannot be evaluated. It is due
to the singularities in the diquark amplitudes χ̃(pi) and in
the exchange quark propagator. The rational n-pole forms
of the diquark amplitude, Pn-P(p) = (γn/(γn + p2))n for
example yield the following upper bound:

Q2 < 4
(

4γn
(1− 3η)2

−M2

)
. (6.36)

A free constituent propagator for the exchange quark gives
the additional constraint,

Q2 < 4

(
m2

q

(1− 2η)2 −M2

)
. (6.37)

It turns out, however, that these bounds on Q2 are in-
significant for the model parameters employed in the cal-
culations described herein.

6.2 Results

In fig. 10, we show the electric and magnetic Sachs form
factors of the proton and neutron using the parameter
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Fig. 10. Nucleon electric and magnetic form factors for fixed widths of S1,0. The label Gauss, shifted refers to a calculation
with diquark vertex function PGau = exp(−(p2/γGau − 1)2). The parameters are listed in Tables 1 and 2 in sect. 3.

sets given in Table 1 in sect. 3 which correspond to a fixed
value for the diquark mass ms = 0.66 GeV. The nucleon
amplitudes used in these calculations correspond to those
shown in fig. 5 of sect. 3. The charge radii obtained by
using the model forms of the diquark BS amplitude given
in Table 1 are given in Table 4.

Examination of the charge radii given in Table 4 re-
veals that the width obtained for the nucleon BS ampli-
tude is closely correlated with the obtained value for the
charge radius of the proton. The dipole, quadrupole and
exponential forms for the diquark BS amplitude, all give
reasonable values for the charge radius of the proton. The
accepted value of the proton charge radius is rp � 0.85 fm.
However, the width of S1,0(p) does not determine the be-
havior of the form factors away from Q2 = 0. This is
especially clear when the exponential and Gaussian forms
are employed for the diquark BS amplitude. In this case,
the proton electric form factor ceases to even vaguely re-
semble the phenomenological dipole fit to experimental

data over most of the range of Q2 shown in fig. 10. The
neutron electric form factor is even more sensitive to the
functional form of the diquark amplitudes. The square of
charge radius of the neutron depends strongly on the cho-
sen form of the diquark BS amplitude. For the exponential
and Gaussian forms, the obtained value of r2n is close to
zero, and it is positive when the Gaussian form of the di-
quark amplitude is used with its peak away from zero (i.e.
x0 �= 0). In fig. 10, we show the form factors that result
from using the shifted Gaussian form for the diquark BS
amplitude with x0/γGau = 1. In fact, the shifted-Gaussian
form also produces a node in the electric form factor of
the neutron, for which there is no experimental evidence.
We conclude that to obtain a realistic description of nu-
cleons, one must rule out the use of forms for the diquark
BS amplitude which peak away from the origin.

In fig. 11 we compare the n = 2 results, obtained from
employing the diquark BS amplitude of dipole form, to
the experimental data of refs. [54,55] and ref. [56] for the
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Fig. 11. Comparison of the electric form factors of proton
and neutron with the experimental data of refs. [54,55] (top)
and ref. [56] (bottom). Here, the dipole form of the diquark
amplitude was used corresponding to the n = 2 result of fig. 10.

electric form factors of proton and neutron, respectively.
In ref. [56], the neutron GE is extracted from data taken
on an unpolarised deuteron target and with employing
various NN potentials. As pointed out in ref. [2], due to
possible systematic errors of this procedure, these results
should not be over-interpreted. They can serve to give us
a feeling for the qualitative behavior and rough size of the
electric form factor of the neutron, however. With resem-
bling the phenomenological dipole fit for the proton fairly
well, as seen in fig. 10, it might not be too surprising to
discover good agreement also with the experimental re-
sults for the proton. However, with the special emphasis
of our present study being put on charge conservation,
such compelling agreement also for finite photon momen-
tum transfer and over the considerable range of Q2 (from

0 up to 3.5 GeV2) seems quite encouraging. Also the neu-
tron electric form factor compares reasonably well with
the data, especially considering that we did deliberately
not put much effort in adjusting the free parameters in
our present model.

The obtained magnetic moments, which range from
0.95 . . . 1.26 nuclear magnetons for the proton and from
−0.80 . . . −1.13 nuclear magnetons for the neutron, are
too small. The accepted values for the proton and neutron
magnetic moments are 2.79 and −1.91 nuclear magnetons,
respectively. The essential reasons for this discrepancy are
summarized as follows:

1. The next important diquark correlations which should
be included in the present framework are those of axi-
alvector diquarks. These are necessary for an extension
of the quark-diquark model to the decuplet baryons
[37]. The contribution of their magnetic moments to
the anomalous magnetic moments of the nucleons was
assessed in ref. [57]. There, the NJL model was em-
ployed to calculate the electromagnetic form factors
of on-shell diquarks, and their influence on the nu-
cleon magnetic moments was estimated from an ad-
ditive diquark-quark picture. The conclusion from this
study was that including the magnetic moment of the
axialvector diquark alone did not improve the nucleon
magnetic moments. The additionally possible transi-
tions between scalar to axialvector diquarks, however,
were found to raise them substantially. Whether this
finding persists in the fully relativistic treatment, is
subject to current investigations [58].
Furthermore, since the axialvector diquark enhances
the binding (i.e. lowers the coupling gs), it tends to
lower the quark mass required to produce the same
nucleon bound state mass and as will be discussed be-
low, a smaller quark mass would also serve to improve
the obtained values for the magnetic moments.

2. In our present study, the diquark-photon vertex is that
of a free scalar particle. The contribution of the corre-

Table 4. The electric charge radii for proton and neutron
for parameter sets having either the S1,0-width or the quark
mass fixed. Error estimates come from the uncertainty in the 7-
dimensional integration. The corresponding experimental val-
ues are about rp � 0.85 fm for the proton and r2

n � −0.12 fm2

for the neutron.

Form of diquark rp (fm) r2
n (fm

2)
amplitude P (±0.02) (±0.02)

Fixed S1,0-width: n=1 0.78 −0.17
n=2 0.82 −0.14
n=4 0.84 −0.12
EXP 0.83 −0.04
GAU 0.92 0.01
GAU shifted 1.03 0.37

Fixed masses: n=1 0.97 −0.24
n=2 0.82 −0.14
n=4 0.75 −0.03
EXP 0.73 −0.01
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Fig. 12. Nucleon electric form factors for fixed quark and di-
quark masses. In the top plot, the bottom set of curves repre-
sent the results obtained for the proton electromagnetic form
factor GE(Q

2) and the top set of curves depict the ratios of

these form factors over the dipole fit
(
1 +Q2/(0.84GeV)2

)−2
.

sponding impulse approximation diagram to the mag-
netic moments (in the right panel of fig. 8) is small,
below 0.01 nuclear magnetons, but non-vanishing. Re-
solving the diquark substructure by coupling the pho-
ton directly to the quarks within the diquark, and tak-
ing into account its sub-leading Dirac structure, will
dress this vertex as discussed (at the end of sect. 5.1)
and it might increase that contribution. We do not ex-
pect the gain to be substantial though.

3. The consistency requirement is that the strength of the
coupling gs = 1/Ns is given by the normalization of
the diquark Ns. At present, this leads to a rather nar-
row nucleon BS amplitude in combination with some-
what large values for constituent quark mass. Both of
these effects tend to suppress the quark contribution to
the form factors arising from the impulse-approximate
terms. If we had assumed a quark massmq of 450 MeV,

and artificially increased the width of the diquark BS
amplitude, the quark diagram alone would easily con-
tribute 1.3 . . . 1.5 nuclear magnetons to the magnetic
moment of the proton. That is, a small change to the
dynamics of the diquark BS amplitude or mass of the
quark can have a significant impact on the magnetic
moment of the proton. A similar sensitivity of mag-
netic moments of vector mesons to the scales in the
quark propagator and bound state vector meson BS
amplitude was also observed in ref. [59].

The electric form factors obtained using the fixed val-
ues for quark and diquark masses of mq = 0.58 GeV and
ms = 0.66 GeV, respectively (i.e. for fixed values of the
binding energy), are shown in fig. 12. The corresponding
charge radii are given in the right half of Table 4. The dif-
ferences between the various diquark amplitude parame-
terisations considered herein do not lead to such dramatic
differing behaviors of the nucleon form factors in this case.
Nevertheless, we observed that use of the exponential form
of the diquark BS amplitude still produces a proton elec-
tric form factor that falls off too fast when compared to
the phenomenological dipole fit. It also results in a tiny
value for the square of the charge radius of the neutron.

Finally, we compare the relative importance of the
various contributions to the form factors that arise from
the impulse-approximate, exchange-quark, and seagull di-
agrams. We separately plot each of these contributions
to the total proton and neutron electric form factors in
fig. 13 for comparison. For the purposes of comparison, we
used the parameter set for the dipole form of the diquark
BS amplitude. (This form of the diquark BS amplitude is
used because of the excellent description it provides for
the electric form factor of the proton.)

Here, it is interesting to note that the seagull couplings
contribute up to about 2/5 of the proton electric form fac-
tor GE(Q2)! It is clear that in the nucleon, these beyond-
the-impulse contributions are certainly not negligible. As
in the previous discussion of the magnetic moments, where
we observed a suppression of the impulse-approximate di-
agrams arising from the narrow momentum distribution
of the nucleon BS amplitude, this effect is a result of em-
ploying a narrow diquark BS amplitude. Again, we find
that employing a diquark BS amplitude that is wider in
momentum space leads to a wider nucleon BS amplitude
and therefore implies that the impulse approximate contri-
butions are more dominant than the other contributions.
This is the case when pointlike diquark BS amplitudes are
employed, such as in ref. [36].

For the neutron, we observe that its electric form factor
arises from a sum of large terms which strongly cancel
each other to produce a small effect. This cancellation is
the explanation for the appearance of “wiggles” in the
results for the neutron GE(Q2) at moderate Q2 shown in
figs. 10, and 12. The wiggles are artifacts of the numerical
procedure employed.
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Fig. 13. Contribution of the single diagrams to neutron and
proton electric form factors. The diquark amplitude is the
dipole. The sum of these contributions (SUM) corresponds to
the result of fig. 11.

7 Conclusions

We have introduced an extension of the covariant quark-
diquark model of baryon bound states. The framework
developed herein allows for the inclusion of finite-sized di-
quark correlations in the description of the nucleon bound
state in a manner which preserves electromagnetic current
conservation for the first time. For such a framework to
maintain current conservation of the nucleon, it is neces-
sary to include contributions to the electromagnetic cur-
rent which arise from the couplings of the photon to the
quark-exchange kernel of the nucleon BSE. These contri-
butions are derived from the Ward-Takahashi identities
of QED and include the coupling of the photon to the
exchanged quark in the kernel and the photon coupling

directly to the BS amplitude of the diquark (the so-called
seagull contributions). It was shown analytically that the
resulting nucleon current is conserved and these additions
are sufficient to ensure the framework provides the correct
proton and neutron charges independent of the details of
the model parameters.

To explore the utility of this framework under the
most simple model assumptions, simple constituent-quark
and constituent-diquark propagators and one-parameter
model diquark BS amplitudes were employed for the nu-
merical application of the framework. The BS amplitude
for the scalar diquark was parametrised by the leading
Dirac structure and various forms for the momentum de-
pendence of the amplitude were investigated. It was shown
that the antisymmetry of the diquark amplitude under
quark exchange places tight constraints on the form of
the diquark BS amplitude and that the incorporation of
these constraints have the effect of removing much of the
model dependence of the diquark BS amplitude parame-
ters from the calculation of the nucleon electromagnetic
form factors.

Calculations of the electromagnetic form factors away
from Q2 = 0 require that the nucleon BS amplitudes and
wave functions be boosted. In this Euclidean-space for-
mulation, this amounts to a continuation of amplitudes
and wave functions into complex plane. Two procedures
to account for proper handling of poles arising from the
constituent particles in the nucleon are described and com-
pared. The feasibility of each procedure is discussed and
explored in detail. It is shown analytically and explicitly in
a numerical calculation that the two approaches produce
the same results for the electromagnetic form factors, thus
demonstrating that the framework properly accounts for
the non-trivial analytic structures of the constituent prop-
agators.

For the particular choice of simple dynamical mod-
els explored herein, the masses of the quark and diquark
propagators along with the width of the model diquark BS
amplitude are the only free parameters in the framework.
The latter width is thereby implicitly determined from
fixing the nucleon mass. It is shown, for the case of the
dipole (and possibly quadrupole) form of the diquark BS
amplitude, that these few parameters are sufficient to pro-
vide an excellent description of the electric form factors for
both the neutron and proton. Other forms of the diquark
BS amplitude that were explored, such as the exponential
and Gaussian forms, may be ruled out on phenomenolog-
ical grounds as they lead to nucleon electromagnetic form
factors which are inconsistent with the experimental data.

It was found that the framework is at present unable to
reproduce the nucleon magnetic moments. The calculated
magnetic moments are smaller than those obtained in ex-
periment by about 50%. Possible explanations for this are
the effect of an inclusion of axialvector diquark correla-
tions, the addition of more complex structures in the di-
quark amplitudes, and a resolution of the quark substruc-
ture in the diquark-photon coupling. These improvements
are the subject of work currently in progress.
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In conclusion, we find that the covariant quark-diquark
model of the nucleon provides a framework that is suffi-
ciently rich to describe the electromagnetic properties of
the nucleon. However, to ensure that the framework sat-
isfies electromagnetic current conservation one must go
beyond the usual impulse approximation diagrams and in-
clude contributions that arise from the photon couplings
to the nucleon BSE kernel. In a numerical application of
this framework, it was found that these contributions pro-
vide a significant part of the electromagnetic form factors
of the nucleon and cannot be neglected.
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Appendix A. Conventions for diquark
amplitudes

The BS wave functions χ(p, P ) and χ̄(p, P ) of the (scalar)
diquark bound state are defined by the matrix elements

χαβ(x, y;P) := 〈qα(x)qβ(y)|P+〉 , (A.1)
χ̄αβ(x, y;P) := 〈P+|q̄α(x)q̄β(y)〉

=
(
γ0χ

†(y, x;P)γ0
)
αβ

(A.2)

Note that there is no need for time ordering here in con-
trast to quark-antiquark bound states. The following nor-
malization of the states is used

〈P ′
±|P±〉 = 2ωP (2π)3δ3(P′ − P) , ω2P = P2 +m2

s , (A.3)

and the charge conjugate bound state being |P−〉 =
C|P+〉. The contribution of the charge conjugate bound
state is included in eq. (2.2) for P0 = −ωP . From invari-
ance under space-time translations, the BS wave function
has the general form

χαβ(x, y;P) = e−iPX

∫
d4p
(2π)4

e−ip(x−y)χαβ(p, P ) , (A.4)

with X = (1− σ)x + σy, p := σpα − (1− σ)pβ , and
P = pα + pβ , where pα, pβ denote the momenta of the
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Fig. 14. Momentum definitions in diquark amplitudes.

outgoing quarks in the Fourier transform χαβ(pα, pβ ;P)
of χαβ(x, y;P), see fig. 14. One thus has the relation

χαβ(p, P ) :=χαβ(p+ (1−σ)P,−p+ σP ;P)
∣∣
P0=ωP

. (A.5)

In the definition of the conjugate amplitude, the conven-
tion

χ̄αβ(x, y;P) = eiPX̄

∫
d4p
(2π)4

e−ip(x−y) χ̄αβ(p, P ) , (A.6)

with X̄ = σx+(1−σ)y, ensures that Hermitian conjugation
from eq. (A.2) yields

χ̄αβ(p, P ) =
(
γ0χ

†(p, P )γ0
)
αβ
. (A.7)

In the conjugate amplitude χ̄αβ(p, P ), the definition of
relative and total momenta corresponds to p = (1−σ)p′α−
σp′β and P = −p′α − p′β for the outgoing quark momenta
p′α, p

′
β in

χ̄αβ(p′α, p
′
β ;P) =

(
γ0χ

†(−p′β ,−p′α;P)γ0
)
αβ
, (A.8)

cf. fig. 14. Note here that Hermitian conjugation im-
plies for the momenta of the two respective quark legs,
pα → −p′β , and pβ → −p′α, which is equivalent to σ ↔
(1−σ) and P → −P . Besides the Hermitian conjugation of
eq. (A.7), one has from the antisymmetry of the wave func-
tion, χαβ(x, y;P) = −χβα(y, x;P). For the corresponding
functions of the relative coordinates/momenta, this entails
that σ and (1−σ) have to be interchanged in exchanging
the quark fields,

χ(x, P ) = −χT (−x, P )∣∣
σ↔(1−σ)

, (A.9)

χ(p, P ) = −χT (−p, P )∣∣
σ↔(1−σ)

.

This interchange of the momentum partitioning can be
undone by a charge conjugation, from which the following
identity is obtained:

χT (p, P ) = −Cχ̄(−p,−P )C−1 . (A.10)

This last identity is useful for relating χ̄ to χ in Euclidean
space. In particular, this avoids the somewhat ambiguous
definition of the conjugation following from eq. (A.2) in
Euclidean space with complex bound state momenta.

One last definition for diquark amplitudes concerns the
truncation of the propagators S attached to the quark legs,
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thus defining the amputated amplitudes χ̃ and ˜̄χ by

χαβ(p, P ) =
(
S(pα)χ̃(p, P )ST (pβ)

)
αβ
, (A.11)

χ̄αβ(p, P ) =
(
ST (−p′α)˜̄χ(p, P )S(−p′β))αβ . (A.12)

With the definitions above, the same relations hold for the
amputated amplitudes, in particular,

˜̄χ(p, P ) = γ0χ̃†(p, P )γ0 , (A.13)

χ̃(p, P ) = −χ̃T (−p, P )∣∣
σ↔(1−σ)

.

In sect. 2 the antisymmetric Green function G(0) for the
disconnected propagation of identical quarks with propa-
gator S(p),

G
(0)
αγ,βδ(p, q, P ) = (2π)4δ4(p− q)
Sαβ(σP − p)Sγδ((1−σ)P + p)− crossed term , (A.14)

was used to derive the normalization condition for the
diquark amplitudes. This notation is somewhat sloppy. In
particular in the second term proportional to δ4(p+q), rep-
resenting the crossed propagation with exchange of the ex-
ternal quark lines, one may use either p or −q in the argu-
ments of the propagators. Exchanging one for the other is
possible only with, at the same time, exchanging σ ↔ 1−σ
as well, however. Momentum conservation entails that in-
coming and outgoing quark pairs in successive correlation
functions can only be connected if, besides the relative
momenta p = ±q, also the momentum partitioning vari-
ables of the pairs match. We can include this condition
explicitly by introducing temporarily the dimensionless σ′
and σ (both in [0, 1]) for the incoming and outgoing pair,
respectively, thus writing,

G
(0)
αγ,βδ(p, σ, q, σ

′, P ) = (2π)4δ4(p− q) δ(σ − σ′)×
Sαβ(σP − p)Sγδ((1−σ)P + p)

−(2π)4δ4(p+ q) δ(σ + σ′ − 1)×
Sαδ(σP − p)Sγβ((1−σ)P + p) .

(A.15)

The inverse G(0)−1
can then be defined as

G(0)−1
αγ,βδ(p, σ, q, σ′, P ) =

1
4

(
(2π)4δ4(p− q) δ(σ − σ′)×

S−1
αβ (σP − p)S−1

γδ ((1−σ)P + p)×
− (2π)4δ4(p+ q) δ(σ + σ′ − 1)

S−1
αδ (σP − p)S−1

γβ ((1−σ)P + p)
)
,

(A.16)

giving the exchange antisymmetric unity in the space of
(identical) 2-quark correlations upon (left or right) multi-

plication with G(0),

∫
d4k
(2π)4

1∫
0

dσ̃ G(0)
αγ,ρω(p, σ, k, σ̃, P )G

(0)−1
ρω,βδ(k, σ̃, q, σ′, P ) =

1
2

(
δαβ δγδ (2π)4δ4(p− q) δ(σ − σ′)

− δαδ δγβ (2π)4δ4(p+ q) δ(σ + σ′ − 1)
)
. (A.17)

This is the way the multiplication of 2-quark correlation
functions for identical quarks used in sect. 2 is understood
properly. Either eq. (A.15) or eq. (A.16) can be used in the
derivation of the normalization condition for the diquark
amplitude χ for identical quarks, eq. (2.9).

Appendix B. Supplements on the nucleon
BSE

In this appendix we would first like to explore the pos-
sibility of having exchange-symmetric arguments in the
diquark amplitudes of the quark-exchange kernel of the
nucleon BSE. Consider the invariant x1 for the relative
momentum in the incoming diquark in the kernel (3.6)
corresponding to the definition of the symmetric argument
of P (x) given in eq. (2.12). From eqs. (3.9) and (3.11) one
obtains (with σ + σ̂ = 1 and η + η̂ = 1 determining the
momentum partitioning within the diquark and nucleon,
respectively)

x1 = −p2 − σσ̂k2 − pk + (1−3η)Pp+ (2σσ̂η̂−η)Pk
+(η(1−2η)− σσ̂η̂2)P 2 . (B.1)

One verifies readily that for σ = (1−2η)/(1−η), according
to (3.13), the prefactor of the term ∝ P 2 vanishes, and
that of the term ∝ Pk becomes σ̂(1−3η) leaving only the
choice η = 1/3 for a P -independent x1. One might now
argue that, from the antisymmetry considerations alone,
we should be free to add an arbitrary term proportional
to the square of the total diquark momentum in the def-
inition of x. We will show now that such a redefinition
cannot lead to a P -independent x either (for values of
η different from 1/3). Here, the diquark momentum is
PD = q + pα = η̂P − k and with

x̂1 := x1 + CP 2
D,

P 2
D = η̂2P 2 − 2η̂Pk + k2 , (B.2)

one finds that in order to have no terms ∝ P 2 in x̂1,

C = −η̂−2 (η(1−2η)− σσ̂η̂2) . (B.3)

With this C, however, one has

x̂1=−p2 − ηη̂−2(1−2η)k2 − pk+(1−3η)(Pp+ηη̂−1Pk),

independent of σ. This shows that the symmetric argu-
ments of the diquark amplitudes χ and, analogously, χ̄
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can quite generally be independent of the total nucleon
momentum P only for η = 1/3.

The remainder of this appendix describes the structure
of the nucleon BSE for the bound state of scalar diquark
and quark in some more detail. The form of the bound
state pole in the scalar-fermion 4-point function, eq. (3.1),
implies that the corresponding bound state amplitudes
obey

ψ̃(p, Pn)Λ+(Pn) = ψ̃(p, Pn) ,

Λ+(Pn)˜̄ψ(p, Pn) = ˜̄ψ(p, Pn) , (B.4)

with Λ+(Pn) = (P/n +Mn)/2Mn. Therefore, the ampli-
tudes can be decomposed as follows:

ψ̃(p, Pn) =
S1(p, Pn)Λ+(Pn) + S2(p, Pn)Ξ(p, Pn)Λ+(Pn) , (B.5)˜̄ψ(p, Pn) =
S1(−p, Pn)Λ+(Pn) + S2(−p, Pn)Λ+(Pn)Ξ(−p, Pn) ,

(B.6)

with Ξ(p, Pn) = (p/−pPn/Mn)/Mn. This simply separates
positive from negative energy components of the ampli-
tudes,

P/n Λ
+(Pn) = Mn Λ

+(Pn) , (B.7)
P/nΞ(p, Pn)Λ+(Pn) = −MnΞ(p, Pn)Λ+(Pn) ,
and thus, Λ+(Pn)Ξ(p, Pn)Λ+(Pn) = 0 .

One furthermore has

Λ+(Pn) Ξ(p, Pn)Ξ(p, Pn)Λ+(Pn) =(
p2

M2
n

− (pPn)2

M4
n

)
Λ+(P ) , (B.8)

which allows to rewrite the homogeneous BSE (3.4) in
terms of 2-vectors ST (p, Pn) := (S1(p, Pn), S2(p, Pn)), us-
ing the kernel (3.6),

S(p, Pn) =
1

2N2
s

∫
d4k
(2π)4

P (x1)P (x2)D(ks)T (p, k, Pn)S(k, Pn),

(B.9)

with ks = (1−η)Pn − k , kq = k + ηPn and

see equation (B.10) on next page

After performing these traces the transfer to Euclidean
metric introducing 4-dimensional polar variables is done
according to the prescriptions

p2, k2 → −p2, −k2 , P 2
n →M2

n ,

pPn → iMnp y , kPn → iMnk z ,

pk → −k p u(x, y, z) ,
u(x, y, z) = yz + x

√
1− y2

√
1− z2 . (B.11)

In these variables, the nucleon BS-amplitudes are func-
tions of the modulus of the relative momentum and its
azimuthal angle with the total momentum. The matrix T
in the kernel, in addition to the moduli p, k and azimuthal
angles y, z of both relative momenta, also depends on the
angle u between them,

S(p, Pn) → S(p, y) ,
T (p, k, Pn) → T (p, y, k, z, u(x, y, z)) . (B.12)

The azimuthal dependence of the amplitudes is taken into
account by means of a Chebyshev expansion to order N ,
see, e.g., ref. [60],

S(p, y) �
N−1∑
n=0

(−i)n Sn(p)Tn(y) , (B.13)

Sn(p) = in
2
N

N∑
k=1

S(p, yk)Tn(yk) , (B.14)

where the yk = cos
(
π(k−1/2)

N

)
are the zeros of the Cheby-

shev polynomial of degree N . Here, Chebyshev polynomi-
als of the 1st kind are used with, for later convenience,
a somewhat non-standard normalization T0 := 1/

√
2. An

explicit factor (−i)n was introduced in order to obtain real
Chebyshev moments Sn(p) for all n. Analogous formulae
are obtained for expansions in Chebyshev polynomials of
the 2nd kind, which are used in refs. [36,37]. The nucleon
BSE now reads

Sm(p) =

− 1
2N2

s

∫
k3dk
(4π)2

N−1∑
n=0

im−nTmn(p, k)Sn(k), (B.15)

with

Tmn(p, k) =
2
π

1∫
−1

√
1− z2dz ×

1
xs +m2

s

1∫
−1

dx
2
N

N∑
k=1

(
P (x1)P (x2)

)
y=yk

×

T (p, yk, k, z, u(x, yk, z)) Tm(yk)Tn(z) , (B.16)

where xs = k2+2i(1−η)Mnkz−(1−η)2M2
n is the invariant

momentum of the free scalar propagator D of mass ms.

Appendix C. Supplements on nucleon charge
conservation

The missing step in the explicit verification of the correct
charges QP = 1 for the proton and QN = 0 for the neutron
is to prove that

Nq −ND = 2NX + 3NP (C.1)
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T (p, k, Pn) =
1
2

(
1 0

0
(

p2

M2
n
− (pPn)

2

M4
n

)−1

)(
tr {S(q)S(kq)Λ+(Pn)}
tr {S(q)S(kq)Λ+(Pn)Ξ(p, Pn)}

tr {S(q)S(kq)Ξ(k, Pn)Λ+(Pn)}
tr {S(q)S(kq)Ξ(k, Pn)Λ+(Pn)Ξ(p, Pn)}

)
.

(B.10)

∫
ψ̄MD−1

M Γ µ
q,MψM

Wick rotation−−−−−−−−→ ∫
ψ̄ED−1

E Γ µ
q,EψE

ψ̃M=S−1
M D−1

M ψM

� �ψ̃E �=S−1
E D−1

E ψE∫ ˜̄ψMSMΓ µ
q,MSMDMψ̃M

Wick rotation−−−−−−−−→
∫ ˜̄ψESEΓ µ

q,ESEDEψ̃E

+ residue terms

Fig. 15. Interrelation of matrix elements in Minkowski and Euclidean space. The integral sign is
shorthand for the four-dimensional integration over the relative momentum k, see eq. (D.1).

which is equivalent to QN = 0, see eqs. (6.27) to (6.29) in
sect. 6. To this end, note that from eqs. (4.5) and (4.6)
the l.h.s above can be written as,

Nq −ND =
Pµ

2Mn
i

∫
d4k
(2π)4

×

tr
[
ψ̄(−k, P )

(
∂

∂kµ
S−1(kq)D−1(ks)

)
ψ(k, P )

]
=
Pµ

2Mn
i

∫
d4k
(2π)4

×

tr

[
ψ̄(−k, P )

(
∂

∂kµ
S−1(kq)D−1(ks)ψ(k, P )

)

+
(
∂

∂kµ
ψ̄(−k, P )S−1(kq)D−1(ks)

)
ψ(k, P )

]
− total derivatives , (C.2)

with kq = ηP + k and ks = η̂P − k as in the previous sec-
tions. A surface term which vanishes for normalizable BS
wave functions ψ and ψ̄ was not given explicitly. Using the
BSEs for ψ̃ = S−1D−1ψ and ˜̄ψ = ψ̄S−1D−1, cf. eqs. (5.7)
and (5.8), in analogy to the proof of current conservation
in sect. 5, one obtains

Nq −ND =
Pµ

2Mn
i

∫
d4p
(2π)4

d4k
(2π)4

×

tr
[
ψ̄(−p, P )

(
∂

∂pµ
K(p, k, P )

+
∂

∂kµ
K(p, k, P )

)
ψ(k, P )

]
. (C.3)

From eq. (3.6) for the explicit form of the exchange kernel
it follows that(

∂

∂pµ
+

∂

∂kµ

)
K(p, k, P ) = − 1

2N2
s

×
{
2
(
∂

∂qµ
S(q)

)
P (−p21)P (−p22) + S(q)×

(
3p1µ P ′

1(−p21)P (−p22)− 3p2µ P1(−p21)P ′(−p22)
) }

,

(C.4)

since q = (1−2η)P−p−k, p1 = −(1−3η)P/2+p+k/2 and
p2 = (1−3η)P/2− p/2− k. Comparing to the definitions
of NX and NP, eqs. (4.7) and (4.8) in sect. 4, respectively,
we see that eq. (C.4) inserted in eq. (C.3) gives (C.1) as
required.

Appendix D. Calculation of the impulse
approximation diagrams

In this appendix we discuss the difficulties in the formal
transition from the Minkowski to the Euclidean metric
which are encountered in the connection between Bethe-
Salpeter amplitudes ψ̃ and Bethe-Salpeter wave functions
ψ in a general (boosted) frame of reference of the nucleon
bound state.

As the generic example for this discussion, we choose
the first diagram in fig. 8 which describes the impulse-
approximate contribution arising from the coupling of the
photon to the quark within the nucleon, 〈Ĵµq 〉, according
to eq. (6.10) with eq. (6.11). Please refer to fig. 8 and
Table 3 for the momentum definitions employed herein.

In the Mandelstam formalism, such matrix elements
between bound states are related to the corresponding BS
wave functions in Minkowski space, here to the nucleon BS
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wave functions ψM.5 Upon the transition to the Euclidean
metric, the corresponding contribution to the observable,
here to the nucleon form factors, is determined by the
“Euclidean BS wave function” ψE. In the rest frame of
the nucleon bound state this transfer from M → E of the
BS wave functions commutes with the replacement of the
wave functions by the truncated BS amplitudes; that is,
unique results are obtained from the Euclidean contribu-
tions based on either employing the Minkowski space wave
functions or the BS amplitudes which are related by the
truncation of the propagators of the constituent legs, here
ψ̃M = S−1

M D−1
M ψM, or, vice versa, ψM = SMDMψ̃M.

At finite momentum transfer Q2 one needs to employ
BS wave functions in a more general frame of reference,
here we use the Breit frame in which neither the incoming
nor the outgoing nucleon are at rest. As described in sect.
6, the “Euclidean wave function” ψE in this frame is ob-
tained from the solution to the BSE in the rest frame by
analytic continuation, in particular, by inserting complex
values for the argument of the Chebyshev polynomials, see
eqs. (6.33). This corresponds to the transition from left to
right indicated by the arrow of the upper line in fig. 15.

In the analogous transition on the other hand, when
the truncated BS amplitudes are employed, the possible
presence of singularities in the propagators of legs has to
be taken into account explicitly. In the present example,
these are the simple particle poles of the propagators of
the constituent quark and diquark that might be encircled
by the closed path in the k0-integration. The correspond-
ing residues have to be included in the transition to the
Euclidean metric in this case, which is indicated in the
lower line of fig. 15.

The conclusion is therefore that the naive relation be-
tween BS amplitudes and wave functions cannot be main-
tained in the Chebyshev expansion of the Euclidean spher-
ical momentum coordinates when singularities are encoun-
tered in the truncation of the legs. Resorting to the Min-
kowski space definitions of BS amplitudes vs. wave func-
tions, however, unique results are obtained from either em-
ploying the domain of holomorphy of the BS wave func-
tions in the continuation to the Euclidean metric (with
complex momenta) or, alternatively and technically more
involved, from keeping track of the singularities that can
occur in the Wick rotation when the truncated amplitudes
and explicit constituent propagators are employed.

The rest of this section concerns the description of how
to account for these singularities which, for our present
calculations employing constituent poles for quark and di-
quark, give rise to residue terms as indicated in the lower
right corner of fig. 15.

To this end consider the quark contribution to the ma-
trix elements of the electromagnetic current which, from

5 In the following the subscript M stands for definitions in
Minkowski space and E for the corresponding ones in Euclidean
space.

Re

Cut

Cut

Cut
p

 

Q

Q

Contour

(η/2−1)

Qη/2

encircled singularities

ks

kq

q

k3

k 0

Im k 0

(−η/2) ^

Fig. 16. Location of the relevant singularities in the impulse-
approximate quark contribution to the form factors. The rel-
ative momentum k is the integration variable in the loop dia-
gram corresponding to eq. (D.1).

eq. (6.10) with eq. (6.11), is given by

〈Ĵµq 〉 = qq
∫

d4k
(2π)4

×
˜̄ψ(−k − η̂Q, P ′)D(ks)S(pq)Γ

µ
quarkS(kq)ψ̃(k, P ) . (D.1)

We are interested in the location of the propagator
poles herein. For these poles, solving the corresponding
quadratic equation for the zeroth component of the rela-
tive momentum k0, from Table 3 and eqs. (6.30), yields

k2q −m2
q − iε = 0 ⇔

k0pole,1 = −η ωQ ± W (mq, (k − η/2Q)2), (D.2)

p2q −m2
q − iε = 0 ⇔

k0pole,2 = −η ωQ ± W (mq, (k − (η/2− 1)Q)2), (D.3)

k2s −m2
s − iε = 0 ⇔

k0pole,3 = η̂ ωQ ± W (ms, (k + η̂/2Q)2), (D.4)

with W (m,k2) =
√

k2 +m2 − iε (and η + η̂ = 1).
For Q = 0, i.e. in the rest frame of the nucleon in

which the Bethe-Salpeter equation was solved, the naive
Wick rotation is justified for 1− ms

M < η <
mq
M , since there

always is a finite gap between the cuts contained in the
hypersurface Rek0 = 0 of the Rek0 – Imk0 – k space. As
Q increases, these cuts begin are shifted along both the
k3 and the k0-axis, as sketched in fig. 16. This eventually
amounts to the effect that one of the two cuts arising
from each propagator crosses the Im k0-axis. As indicated
in the figure, Wick rotation k0 → ik4 is no longer possible
for arbitrary values of k3 without encircling singularities.
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Fig. 17. The impulse-approximate contribution, correspond-
ing to the diagrams of fig. 8, to the electric form factor of the
proton (employing the dipole diquark amplitude). Results of
the BS wave function calculations for the η-values 1/3 and 0.4
are compared to the respective amplitude plus residue calcu-
lations. The results are normalized to the latter with η = 1/3.

The corresponding residues thus lead to

〈Ĵµq 〉 → qq

∫
E

d4k
(2π)4

×

˜̄ψ(−k − η̂Q, P ′)D(ks)S(pq)Γµ
q S(kq)ψ̃(k, P )

+i
∫

d3k
(2π)3

θk
˜̄ψ(−k4pole,1,−k − η̂Q, P ′)D(ks)S(pq)×

Γµ
q Res(S(kq))ψ(k

4
pole,1,k, P )

+ analogous terms for S(pq) and D(ks) (D.5)

upon transforming eq. (D.1) to the Euclidean metric.
Here, the residue integral is evaluated at the position of
the pole in the incoming quark propagator S(kq) on the
Euclidean k4-axis

k4pole,1 = −iη
√
M2 +Q2/4 + iW (mq, (k − η/2Q)2) ,

where Res(S(kq)) denotes the corresponding residue, and
the abbreviation

θk ≡ θ (
η ωQ −W (mq, (k − η/2Q)2)

)
was adopted to determine the integration domain for
which the encircled singularities of fig. 16 contribute.

Analogous integrals over the spatial components of the
relative momentum k arise from the residues correspond-
ing to the poles in the outgoing quark propagator S(pq)
and the diquark propagator D(ks) as given in eqs. (D.3)
and (D.4).

One verifies that these cuts (as represented by the
shaded areas in fig. 16) never overlap. Pinching of the de-
formed contour does not occur, since there are no anoma-
lous thresholds for spacelike momentum transfer Q2 in
these diagrams.

In fig. 17 we compare results for the electric form fac-
tor of the proton employing the nucleon BS amplitudes,
together with the procedure to account for the singulari-
ties as outlined above, with the corresponding wave func-
tion calculations. The n = 2 dipole diquark amplitude of
sect. 3 is employed herein once more. For η = 1/3 the
Chebyshev expansion of the BS wave function to 9 orders
still turns out insufficient to provide for stable numerical
results. This is due to being too close to the range in η that
requires proper treatment of the diquark pole contribution
to the nucleon BSE which, with the present value of the
mass ms/M = 0.7, is the case for η ≤ 1 −ms/M = 0.3.
The considerably weaker suppression of higher orders in
the Chebyshev expansion of the BS wave function as com-
pared to the expansion of the BS amplitude enhances the
residual η-dependence of the observables obtained from
the former expansion at a given order, in particular, when
it has to reproduce close-by pole contributions in the con-
stituent propagators. The impulse-approximate contribu-
tions to GE deviate substantially from those employing
the BS amplitude and residue calculations in this case.
On the other hand, for values of the momentum parti-
tioning variable which are a little larger than 1/3 such as
η = 0.4 used in the other results of fig. 17, unique results
are obtained from both procedures. Both, the BS wave
function and amplitude calculation are in perfect agree-
ment for values of the momentum partitioning that are
closer to the middle of the range allowed to η.

For the seagull and exchange quark contributions cor-
responding to the diagrams of fig. 9 an analogous analysis
of the singularity structure is considerably more compli-
cated. The explicit inclusion of their contributions which
allowed the calculation based on the BS amplitude expan-
sion also of these diagrams is numerically too involved.
For these contributions to the form factors we have to
resort to the BS wave function calculations. Unlike the
impulse-approximate contributions we find, however, that
the deviations in the results for the exchange quark and
seagull contributions for η = 1/3 and η = 0.4 are smaller
than the numerical accuracy of the calculations and thus
negligible. We attribute this to the fact that the exchange
quark and seagull contributions to the form factors tend to
fall off considerably faster with increasing Q2 than those
of the impulse approximation. This can be seen in fig. 13.

Small residual η-dependences are observed for the mo-
mentum transfers above 3GeV2 also in the otherwise sta-
ble calculations. These give rise to deviations in the results
for the form factors of at most 4% which decrease rapidly
and become negligible at lower Q2.
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